Implement chunked_buffer

This commit is contained in:
2025-05-26 00:47:54 +02:00
parent 54b95b1662
commit a1db1cd9e2
15 changed files with 999 additions and 80 deletions

View File

@ -39,6 +39,10 @@ ASL_TEST(popcount) // NOLINT(*-cognitive-complexity)
ASL_TEST(countr_zero)
{
ASL_TEST_EXPECT(asl::countr_zero(uint8_t{0}) == 8);
ASL_TEST_EXPECT(asl::countr_zero(uint8_t{1}) == 0);
ASL_TEST_EXPECT(asl::countr_zero(uint8_t{2}) == 1);
ASL_TEST_EXPECT(asl::countr_zero(uint8_t{4}) == 2);
ASL_TEST_EXPECT(asl::countr_zero(uint8_t{8}) == 3);
ASL_TEST_EXPECT(asl::countr_zero(uint8_t{255}) == 0);
ASL_TEST_EXPECT(asl::countr_zero(uint8_t{0b00011100}) == 2);
ASL_TEST_EXPECT(asl::countr_zero(uint8_t{0b10101010}) == 1);

View File

@ -250,6 +250,7 @@ template<> struct _integer_traits<uint8_t>
static constexpr bool kSigned = false;
static constexpr bool kUnsigned = true;
using as_signed = int8_t;
using as_unsigned = uint8_t;
};
template<> struct _integer_traits<uint16_t>
@ -257,6 +258,7 @@ template<> struct _integer_traits<uint16_t>
static constexpr bool kSigned = false;
static constexpr bool kUnsigned = true;
using as_signed = int16_t;
using as_unsigned = uint16_t;
};
template<> struct _integer_traits<uint32_t>
@ -264,6 +266,7 @@ template<> struct _integer_traits<uint32_t>
static constexpr bool kSigned = false;
static constexpr bool kUnsigned = true;
using as_signed = int32_t;
using as_unsigned = uint32_t;
};
template<> struct _integer_traits<uint64_t>
@ -271,6 +274,7 @@ template<> struct _integer_traits<uint64_t>
static constexpr bool kSigned = false;
static constexpr bool kUnsigned = true;
using as_signed = int64_t;
using as_unsigned = uint64_t;
};
template<> struct _integer_traits<int8_t>
@ -278,6 +282,7 @@ template<> struct _integer_traits<int8_t>
static constexpr bool kSigned = true;
static constexpr bool kUnsigned = false;
using as_unsigned = uint8_t;
using as_signed = int8_t;
};
template<> struct _integer_traits<int16_t>
@ -285,6 +290,7 @@ template<> struct _integer_traits<int16_t>
static constexpr bool kSigned = true;
static constexpr bool kUnsigned = false;
using as_unsigned = uint16_t;
using as_signed = int16_t;
};
template<> struct _integer_traits<int32_t>
@ -292,6 +298,7 @@ template<> struct _integer_traits<int32_t>
static constexpr bool kSigned = true;
static constexpr bool kUnsigned = false;
using as_unsigned = uint32_t;
using as_signed = int32_t;
};
template<> struct _integer_traits<int64_t>
@ -299,6 +306,7 @@ template<> struct _integer_traits<int64_t>
static constexpr bool kSigned = true;
static constexpr bool kUnsigned = false;
using as_unsigned = uint64_t;
using as_signed = int64_t;
};
template<typename T> concept is_signed_integer = _integer_traits<T>::kSigned;
@ -306,8 +314,8 @@ template<typename T> concept is_unsigned_integer = _integer_traits<T>::kUnsigned
template<typename T> concept is_integer = is_signed_integer<T> || is_unsigned_integer<T>;
template<is_signed_integer T> using as_unsigned_integer = _integer_traits<T>::as_unsigned;
template<is_unsigned_integer T> using as_signed_integer = _integer_traits<T>::as_signed;
template<is_integer T> using as_unsigned_integer = _integer_traits<T>::as_unsigned;
template<is_integer T> using as_signed_integer = _integer_traits<T>::as_signed;
template<typename T> concept is_enum = __is_enum(T);

View File

@ -7,6 +7,7 @@
#include "asl/base/integers.hpp"
#include "asl/base/bit.hpp"
#include "asl/base/meta.hpp"
#include "asl/base/assert.hpp"
namespace asl
{
@ -14,10 +15,24 @@ namespace asl
template<is_integer T>
constexpr bool is_pow2(T x)
{
using unsigned_type = select_t<is_unsigned_integer<T>, T, as_unsigned_integer<T>>;
using unsigned_type = as_unsigned_integer<T>;
return x > 0 && has_single_bit(static_cast<unsigned_type>(x));
}
template<is_integer T>
constexpr T round_down_pow2(T x, T div)
{
ASL_ASSERT(is_pow2(div));
return x & (-div);
}
template<is_integer T>
constexpr T round_up_pow2(T x, T div)
{
ASL_ASSERT(is_pow2(div));
return (x + (div - 1)) & (-div);
}
template<typename T>
concept is_numeric = is_integer<T> || is_floating_point<T>;

View File

@ -13,4 +13,56 @@ ASL_TEST(is_pow2)
ASL_TEST_EXPECT(!asl::is_pow2(6));
ASL_TEST_EXPECT(!asl::is_pow2(1978));
ASL_TEST_EXPECT(!asl::is_pow2(0));
ASL_TEST_EXPECT(asl::is_pow2(4U));
ASL_TEST_EXPECT(asl::is_pow2(uint64_t{65536}));
}
ASL_TEST(round_down_pow2) // NOLINT
{
ASL_TEST_EXPECT(asl::round_down_pow2(0, 1) == 0);
ASL_TEST_EXPECT(asl::round_down_pow2(1, 1) == 1);
ASL_TEST_EXPECT(asl::round_down_pow2(2, 1) == 2);
ASL_TEST_EXPECT(asl::round_down_pow2(3, 1) == 3);
ASL_TEST_EXPECT(asl::round_down_pow2(-1, 1) == -1);
ASL_TEST_EXPECT(asl::round_down_pow2(-2, 1) == -2);
ASL_TEST_EXPECT(asl::round_down_pow2(-3, 1) == -3);
ASL_TEST_EXPECT(asl::round_down_pow2(0U, 1U) == 0U);
ASL_TEST_EXPECT(asl::round_down_pow2(1U, 1U) == 1U);
ASL_TEST_EXPECT(asl::round_down_pow2(2U, 1U) == 2U);
ASL_TEST_EXPECT(asl::round_down_pow2(3U, 1U) == 3U);
ASL_TEST_EXPECT(asl::round_down_pow2(0, 16) == 0);
ASL_TEST_EXPECT(asl::round_down_pow2(1, 16) == 0);
ASL_TEST_EXPECT(asl::round_down_pow2(8, 16) == 0);
ASL_TEST_EXPECT(asl::round_down_pow2(15, 16) == 0);
ASL_TEST_EXPECT(asl::round_down_pow2(16, 16) == 16);
ASL_TEST_EXPECT(asl::round_down_pow2(17, 16) == 16);
ASL_TEST_EXPECT(asl::round_down_pow2(255, 16) == 240);
ASL_TEST_EXPECT(asl::round_down_pow2(-255, 16) == -256);
}
ASL_TEST(round_up_pow2) // NOLINT
{
ASL_TEST_EXPECT(asl::round_up_pow2(0, 1) == 0);
ASL_TEST_EXPECT(asl::round_up_pow2(1, 1) == 1);
ASL_TEST_EXPECT(asl::round_up_pow2(2, 1) == 2);
ASL_TEST_EXPECT(asl::round_up_pow2(3, 1) == 3);
ASL_TEST_EXPECT(asl::round_up_pow2(-1, 1) == -1);
ASL_TEST_EXPECT(asl::round_up_pow2(-2, 1) == -2);
ASL_TEST_EXPECT(asl::round_up_pow2(-3, 1) == -3);
ASL_TEST_EXPECT(asl::round_up_pow2(0U, 1U) == 0U);
ASL_TEST_EXPECT(asl::round_up_pow2(1U, 1U) == 1U);
ASL_TEST_EXPECT(asl::round_up_pow2(2U, 1U) == 2U);
ASL_TEST_EXPECT(asl::round_up_pow2(3U, 1U) == 3U);
ASL_TEST_EXPECT(asl::round_up_pow2(0, 16) == 0);
ASL_TEST_EXPECT(asl::round_up_pow2(1, 16) == 16);
ASL_TEST_EXPECT(asl::round_up_pow2(8, 16) == 16);
ASL_TEST_EXPECT(asl::round_up_pow2(15, 16) == 16);
ASL_TEST_EXPECT(asl::round_up_pow2(16, 16) == 16);
ASL_TEST_EXPECT(asl::round_up_pow2(17, 16) == 32);
ASL_TEST_EXPECT(asl::round_up_pow2(255, 16) == 256);
ASL_TEST_EXPECT(asl::round_up_pow2(-255, 16) == -240);
}

View File

@ -21,6 +21,22 @@ cc_library(
visibility = ["//visibility:public"],
)
cc_library(
name = "chunked_buffer",
hdrs = [
"chunked_buffer.hpp",
],
deps = [
"//asl/memory",
"//asl/memory:allocator",
"//asl/base",
"//asl/containers:buffer",
"//asl/types:array",
"//asl/types:maybe_uninit",
],
visibility = ["//visibility:public"],
)
cc_library(
name = "hash_set",
hdrs = [
@ -75,6 +91,7 @@ cc_library(
],
) for name in [
"buffer",
"chunked_buffer",
"hash_map",
"hash_set",
"intrusive_list",

View File

@ -91,7 +91,7 @@ private:
return is_on_heap(load_size_encoded());
}
constexpr T* push_uninit()
constexpr void* push_uninit()
{
const isize_t sz = size();
resize_uninit_inner(sz + 1);
@ -99,12 +99,15 @@ private:
}
constexpr void resize_uninit_inner(isize_t new_size)
{
if constexpr (!trivially_destructible<T>)
{
const isize_t old_size = size();
if (!trivially_destructible<T> && new_size < old_size)
if (new_size < old_size)
{
destroy_n(data() + new_size, old_size - new_size);
}
}
reserve_capacity(new_size);
set_size(new_size);
}
@ -136,18 +139,26 @@ private:
{
if (other.is_on_heap())
{
// If the other in on heap, destroy here and adopt their
// data. We'll soon adopt the allocator as well.
destroy();
m_data = other.m_data;
m_capacity = other.m_capacity;
store_size_encoded(other.load_size_encoded());
}
else if (trivially_move_constructible<T>)
{
destroy();
asl::memcpy(this, &other, kInlineRegionSize);
}
else if (!assign || m_allocator == other.m_allocator)
{
// If allocators are compatible, we can move other's inline
// data here, even if it's on heap here, because that
// memory can be freed by other's allocator, which we will
// soon adopt.
//
// @Note There is an argument to be made for not doing this and
// instead destroying our data here and moving into inline
// storage, which frees one allocation. But also this avoids
// freeing. So I don't know.
// Maybe If this storage is much much larger than the inline
// data, it's worth freeing.
const isize_t other_n = other.size();
const isize_t this_n = size();
resize_uninit_inner(other_n);
@ -163,11 +174,28 @@ private:
}
else
{
// Otherwise, if we have to free, because the allocators are
// not compatible, well we free and move into our inline
// storage region.
// There is an optimization here when the data is trivially
// move constructible (which implies trivially destructible),
// we copy the whole inline region, which includes the size.
// Very magic.
destroy();
if constexpr (trivially_move_constructible<T>)
{
ASL_ASSERT(!is_on_heap());
asl::memcpy(this, &other, kInlineRegionSize);
}
else
{
const isize_t n = other.size();
ASL_ASSERT(n <= kInlineCapacity);
resize_uninit_inner(n);
ASL_ASSERT(!is_on_heap());
relocate_uninit_n(data(), other.data(), n);
set_size_inline(n);
}
}
other.set_size_inline(0);
@ -270,6 +298,14 @@ public:
destroy();
}
constexpr Allocator allocator_copy() const
requires copy_constructible<Allocator>
{
return m_allocator;
}
constexpr Allocator& allocator() { return m_allocator; }
[[nodiscard]] constexpr isize_t size() const
{
return decode_size(load_size_encoded());
@ -315,7 +351,6 @@ public:
void reserve_capacity(isize_t new_capacity)
{
ASL_ASSERT(new_capacity >= 0);
ASL_ASSERT_RELEASE(new_capacity <= 0x4000'0000'0000'0000);
if (new_capacity <= capacity()) { return; }
ASL_ASSERT(new_capacity > kInlineCapacity);
@ -352,17 +387,16 @@ public:
}
constexpr void resize_uninit(isize_t new_size)
requires trivially_default_constructible<T> && trivially_destructible<T>
requires trivially_default_constructible<T>
{
reserve_capacity(new_size);
set_size(new_size);
resize_uninit_inner(new_size);
}
constexpr void resize_zero(isize_t new_size)
requires trivially_default_constructible<T> && trivially_destructible<T>
requires trivially_default_constructible<T>
{
const isize_t old_size = size();
resize_uninit(new_size);
resize_uninit_inner(new_size);
if (new_size > old_size)
{
@ -372,9 +406,16 @@ public:
void resize(isize_t new_size)
requires default_constructible<T>
{
if constexpr (trivially_default_constructible<T>)
{
resize_zero(new_size);
}
else
{
resize_inner(new_size);
}
}
void resize(isize_t new_size, const T& value)
{
@ -384,14 +425,14 @@ public:
constexpr T& push(auto&&... args)
requires constructible_from<T, decltype(args)&&...>
{
T* uninit = push_uninit();
void* uninit = push_uninit();
T* init = construct_at<T>(uninit, std::forward<decltype(args)>(args)...);
return *init;
}
auto data(this auto&& self)
{
using return_type = copy_const_t<un_ref_t<decltype(self)>, T>*;
using return_type = as_ptr_t<copy_const_t<un_ref_t<decltype(self)>, T>>;
// NOLINTNEXTLINE(*-reinterpret-cast)
auto&& buffer = reinterpret_cast<copy_cref_t<decltype(self), class buffer>>(self);
if constexpr (kInlineCapacity == 0)
@ -437,7 +478,7 @@ public:
constexpr auto&& operator[](this auto&& self, isize_t i)
{
ASL_ASSERT(i >= 0 && i <= self.size());
ASL_ASSERT(i >= 0 && i < self.size());
return std::forward_like<decltype(self)>(std::forward<decltype(self)>(self).data()[i]);
}

View File

@ -6,6 +6,7 @@
#include "asl/testing/testing.hpp"
#include "asl/tests/types.hpp"
#include "asl/tests/counting_allocator.hpp"
struct Big
{
@ -14,6 +15,7 @@ struct Big
static_assert(asl::buffer<int32_t>::kInlineCapacity == 5);
static_assert(asl::buffer<int64_t>::kInlineCapacity == 2);
static_assert(asl::buffer<void*>::kInlineCapacity == 2);
static_assert(asl::buffer<char>::kInlineCapacity == 23);
static_assert(asl::buffer<Big>::kInlineCapacity == 0);
@ -30,32 +32,6 @@ ASL_TEST(default_size)
ASL_TEST_EXPECT(b2.data() == nullptr);
}
struct CounterAllocator
{
isize_t* count;
[[nodiscard]]
void* alloc(const asl::layout& layout) const
{
*count += 1;
return asl::GlobalHeap::alloc(layout);
}
void* realloc(void* ptr, const asl::layout& old, const asl::layout& new_layout) const
{
*count += 1;
return asl::GlobalHeap::realloc(ptr, old, new_layout);
}
static void dealloc(void* ptr, const asl::layout& layout)
{
asl::GlobalHeap::dealloc(ptr, layout);
}
constexpr bool operator==(const CounterAllocator&) const { return true; }
};
static_assert(asl::allocator<CounterAllocator>);
struct IncompatibleAllocator
{
static void* alloc(const asl::layout& layout)
@ -80,31 +56,31 @@ static_assert(asl::allocator<IncompatibleAllocator>);
// NOLINTNEXTLINE(*-complexity)
ASL_TEST(reserve_capacity)
{
isize_t count = 0;
asl::buffer<int32_t, CounterAllocator> b(CounterAllocator{&count});
CountingAllocator::Stats stats;
asl::buffer<int32_t, CountingAllocator> b(CountingAllocator{&stats});
ASL_TEST_EXPECT(b.size() == 0);
ASL_TEST_EXPECT(b.capacity() == 5);
ASL_TEST_EXPECT(count == 0);
ASL_TEST_EXPECT(stats.any_alloc_count() == 0);
b.reserve_capacity(4);
ASL_TEST_EXPECT(b.size() == 0);
ASL_TEST_EXPECT(b.capacity() == 5);
ASL_TEST_EXPECT(count == 0);
ASL_TEST_EXPECT(stats.any_alloc_count() == 0);
b.reserve_capacity(12);
ASL_TEST_EXPECT(b.size() == 0);
ASL_TEST_EXPECT(b.capacity() >= 12);
ASL_TEST_EXPECT(count == 1);
ASL_TEST_EXPECT(stats.any_alloc_count() == 1);
b.reserve_capacity(13);
ASL_TEST_EXPECT(b.size() == 0);
ASL_TEST_EXPECT(b.capacity() >= 13);
ASL_TEST_EXPECT(count == 1);
ASL_TEST_EXPECT(stats.any_alloc_count() == 1);
b.reserve_capacity(130);
ASL_TEST_EXPECT(b.size() == 0);
ASL_TEST_EXPECT(b.capacity() >= 130);
ASL_TEST_EXPECT(count == 2);
ASL_TEST_EXPECT(stats.any_alloc_count() == 2);
}
// NOLINTNEXTLINE(*-complexity)
@ -399,21 +375,21 @@ ASL_TEST(move_assign_from_heap)
ASL_TEST(move_assign_trivial_heap_to_inline)
{
isize_t alloc_count = 0;
asl::buffer<int64_t, CounterAllocator> buf{CounterAllocator{&alloc_count}};
asl::buffer<int64_t, CounterAllocator> buf2{CounterAllocator{&alloc_count}};
CountingAllocator::Stats stats;
asl::buffer<int64_t, CountingAllocator> buf{CountingAllocator{&stats}};
asl::buffer<int64_t, CountingAllocator> buf2{CountingAllocator{&stats}};
buf.push(1);
buf.push(2);
ASL_TEST_EXPECT(alloc_count == 0);
ASL_TEST_EXPECT(stats.any_alloc_count() == 0);
buf2.push(3);
buf2.push(4);
buf2.push(5);
ASL_TEST_EXPECT(alloc_count == 1);
ASL_TEST_EXPECT(stats.any_alloc_count() == 1);
buf = std::move(buf2);
ASL_TEST_EXPECT(alloc_count == 1);
ASL_TEST_EXPECT(stats.any_alloc_count() == 1);
ASL_TEST_EXPECT(buf.size() == 3);
ASL_TEST_EXPECT(buf[0] == 3);
@ -423,21 +399,21 @@ ASL_TEST(move_assign_trivial_heap_to_inline)
ASL_TEST(move_assign_trivial_inline_to_heap)
{
isize_t alloc_count = 0;
asl::buffer<int64_t, CounterAllocator> buf{CounterAllocator{&alloc_count}};
asl::buffer<int64_t, CounterAllocator> buf2{CounterAllocator{&alloc_count}};
CountingAllocator::Stats stats;
asl::buffer<int64_t, CountingAllocator> buf{CountingAllocator{&stats}};
asl::buffer<int64_t, CountingAllocator> buf2{CountingAllocator{&stats}};
buf.push(1);
buf.push(2);
ASL_TEST_EXPECT(alloc_count == 0);
ASL_TEST_EXPECT(stats.any_alloc_count() == 0);
buf2.push(3);
buf2.push(4);
buf2.push(5);
ASL_TEST_EXPECT(alloc_count == 1);
ASL_TEST_EXPECT(stats.any_alloc_count() == 1);
buf2 = std::move(buf);
ASL_TEST_EXPECT(alloc_count == 1);
ASL_TEST_EXPECT(stats.any_alloc_count() == 1);
ASL_TEST_EXPECT(buf2.size() == 2);
ASL_TEST_EXPECT(buf2[0] == 1);
@ -635,3 +611,6 @@ ASL_TEST(resize_zero)
}
}
static_assert(asl::same_as<decltype(asl::declval<asl::buffer<int>>().data()), int*>);
static_assert(asl::same_as<decltype(asl::declval<const asl::buffer<int>>().data()), const int*>);

View File

@ -0,0 +1,399 @@
// Copyright 2025 Steven Le Rouzic
//
// SPDX-License-Identifier: BSD-3-Clause
#pragma once
#include "asl/base/utility.hpp"
#include "asl/base/assert.hpp"
#include "asl/base/numeric.hpp"
#include "asl/containers/buffer.hpp"
#include "asl/memory/allocator.hpp"
#include "asl/types/array.hpp"
#include "asl/types/maybe_uninit.hpp"
namespace asl
{
template<
is_object T,
isize_t kChunkSize,
allocator Allocator = DefaultAllocator>
class chunked_buffer
{
static_assert(kChunkSize > 0 && is_pow2(kChunkSize));
using Chunk = array<maybe_uninit<T>, kChunkSize>;
static constexpr isize_t chunk_index(isize_t i)
{
static constexpr int kChunkSizeLog2 = countr_zero(uint64_t{kChunkSize});
return i >> kChunkSizeLog2;
}
static constexpr isize_t index_in_chunk(isize_t i)
{
static constexpr isize_t kMask = kChunkSize - 1;
return i & kMask;
}
struct PerChunkIterator
{
isize_t from_chunk;
isize_t to_chunk;
isize_t from_index_in_chunk;
isize_t to_index_in_chunk;
[[nodiscard]] constexpr bool has_more() const
{
return from_chunk <= to_chunk;
}
void advance()
{
from_chunk += 1;
from_index_in_chunk = 0;
}
[[nodiscard]] constexpr isize_t chunk() const { return from_chunk; }
span<maybe_uninit<T>> make_span(Chunk& chunk) const
{
isize_t from = from_index_in_chunk;
isize_t to = (from_chunk == to_chunk) ? to_index_in_chunk : kChunkSize - 1;
return chunk.as_span().subspan(from, to - from + 1);
}
};
PerChunkIterator make_index_iterator(isize_t from, isize_t to)
{
return PerChunkIterator {
chunk_index(from), chunk_index(to),
index_in_chunk(from), index_in_chunk(to)
};
}
buffer<Chunk*, Allocator> m_chunks;
isize_t m_size{};
void resize_uninit_inner(isize_t new_size)
{
ASL_ASSERT(new_size >= 0);
if constexpr (!trivially_destructible<T>)
{
const isize_t old_size = size();
if (new_size < old_size)
{
for (PerChunkIterator it = make_index_iterator(new_size, old_size - 1);
it.has_more();
it.advance())
{
auto span = it.make_span(*m_chunks[it.chunk()]);
for (auto& el: span)
{
el.destroy_unsafe();
}
}
}
}
reserve_capacity(new_size);
m_size = new_size;
}
template<typename... Args>
void resize_construct(isize_t new_size, Args&&... args)
requires constructible_from<T, Args&&...>
{
const isize_t old_size = m_size;
resize_uninit_inner(new_size);
if (new_size > old_size)
{
for (PerChunkIterator it = make_index_iterator(old_size, new_size - 1);
it.has_more();
it.advance())
{
auto span = it.make_span(*m_chunks[it.chunk()]);
for (auto& uninit: span)
{
uninit.construct_unsafe(std::forward<Args>(args)...);
}
}
}
}
void copy_from(const chunked_buffer& other)
requires copyable<T>
{
const isize_t this_size = size();
isize_t to_copy_assign = asl::min(other.size(), this_size);
resize_uninit_inner(other.size());
for (PerChunkIterator it = make_index_iterator(0, to_copy_assign - 1);
it.has_more();
it.advance())
{
auto to_span = it.make_span(*m_chunks[it.chunk()]);
auto from_span = it.make_span(*other.m_chunks[it.chunk()]);
copy_assign_n(
reinterpret_cast<T*>(to_span.data()), // NOLINT(*-reinterpret-cast)
reinterpret_cast<const T*>(from_span.data()), // NOLINT(*-reinterpret-cast)
to_span.size());
}
if (other.size() > this_size)
{
for (PerChunkIterator it = make_index_iterator(to_copy_assign, other.size() - 1);
it.has_more();
it.advance())
{
auto to_span = it.make_span(*m_chunks[it.chunk()]);
auto from_span = it.make_span(*other.m_chunks[it.chunk()]);
copy_uninit_n(
reinterpret_cast<T*>(to_span.data()), // NOLINT(*-reinterpret-cast)
reinterpret_cast<const T*>(from_span.data()), // NOLINT(*-reinterpret-cast)
to_span.size());
}
}
ASL_ASSERT(size() == other.size());
}
public:
constexpr chunked_buffer()
requires default_constructible<Allocator>
= default;
explicit constexpr chunked_buffer(Allocator allocator)
: m_chunks{std::move(allocator)}
{}
constexpr chunked_buffer(const chunked_buffer& other)
requires copyable<T> && copy_constructible<Allocator>
: m_chunks{other.m_chunks.allocator_copy()}
{
copy_from(other);
}
constexpr chunked_buffer(chunked_buffer&& other)
: m_chunks{std::move(other.m_chunks)}
, m_size{asl::exchange(other.m_size, 0)}
{
ASL_ASSERT(other.m_chunks.size() == 0);
}
constexpr chunked_buffer& operator=(const chunked_buffer& other)
requires copyable<T>
{
if (&other == this) { return *this; }
copy_from(other);
return *this;
}
constexpr chunked_buffer& operator=(chunked_buffer&& other)
{
if (&other == this) { return *this; }
destroy();
m_chunks = std::move(other.m_chunks);
m_size = asl::exchange(other.m_size, 0);
ASL_ASSERT(other.m_chunks.size() == 0);
return *this;
}
~chunked_buffer()
{
destroy();
}
void clear()
{
if constexpr (trivially_destructible<T>)
{
m_size = 0;
}
else if (m_size > 0)
{
resize_uninit_inner(0);
ASL_ASSERT(m_size == 0);
}
}
void destroy()
{
clear();
ASL_ASSERT(size() == 0);
for (Chunk* chunk: m_chunks)
{
alloc_delete(m_chunks.allocator(), chunk);
}
m_chunks.destroy();
}
[[nodiscard]] constexpr isize_t size() const { return m_size; }
[[nodiscard]] constexpr bool is_empty() const { return size() == 0; }
[[nodiscard]] constexpr isize_t capacity() const
{
return m_chunks.size() * kChunkSize;
}
constexpr auto&& operator[](this auto&& self, isize_t i)
{
ASL_ASSERT(i >= 0 && i < self.m_size);
return std::forward_like<decltype(self)>(
(*std::forward<decltype(self)>(self).m_chunks[chunk_index(i)])
[index_in_chunk(i)].as_init_unsafe()
);
}
constexpr T& push(auto&&... args)
requires constructible_from<T, decltype(args)&&...>
{
const isize_t chunk = chunk_index(m_size);
const isize_t in_chunk = index_in_chunk(m_size);
if (m_size == capacity())
{
resize_uninit_inner(m_size + 1);
}
else
{
m_size += 1;
}
void* uninit = &(*m_chunks[chunk])[in_chunk];
return *construct_at<T>(uninit, std::forward<decltype(args)>(args)...);
}
void reserve_capacity(isize_t new_capacity)
{
new_capacity = round_up_pow2(new_capacity, kChunkSize);
if (new_capacity <= capacity()) { return; }
const isize_t required_chunks = new_capacity / kChunkSize;
const isize_t additional_chunks = required_chunks - m_chunks.size();
ASL_ASSERT(additional_chunks > 0);
m_chunks.reserve_capacity(required_chunks);
for (isize_t i = 0; i < additional_chunks; ++i)
{
// @Todo(C++26) _unsafe shouldn't be needed with trivial unions
auto* chunk = alloc_uninit_unsafe<Chunk>(m_chunks.allocator());
m_chunks.push(chunk);
}
}
void resize(isize_t new_size)
requires default_constructible<T>
{
if constexpr (trivially_default_constructible<T>)
{
resize_zero(new_size);
}
else
{
resize_construct(new_size);
}
}
void resize(isize_t new_size, const T& value)
requires copy_constructible<T>
{
resize_construct(new_size, value);
}
void resize_zero(isize_t new_size)
requires trivially_default_constructible<T>
{
const isize_t old_size = m_size;
resize_uninit_inner(new_size);
if (new_size > old_size)
{
for (PerChunkIterator it = make_index_iterator(old_size, new_size - 1);
it.has_more();
it.advance())
{
auto span = it.make_span(*m_chunks[it.chunk()]);
asl::memzero(span.data(), span.size_bytes());
}
}
}
void resize_uninit(isize_t new_size)
requires trivially_default_constructible<T>
{
resize_uninit_inner(new_size);
}
template<typename Chunk>
class generic_iterator
{
isize_t m_index;
span<Chunk> m_chunks;
public:
constexpr generic_iterator(isize_t index, span<Chunk> chunks)
: m_index{index}
, m_chunks{chunks}
{}
constexpr generic_iterator& operator++()
{
m_index += 1;
return *this;
}
constexpr generic_iterator operator++(int)
{
auto tmp = *this;
m_index += 1;
return tmp;
}
constexpr bool operator==(this generic_iterator self, generic_iterator other)
{
ASL_ASSERT(self.m_chunks.data() == other.m_chunks.data());
return self.m_index == other.m_index;
}
constexpr auto& operator*(this generic_iterator self)
{
ASL_ASSERT(self.m_index >= 0);
return (*self.m_chunks[chunk_index(self.m_index)])[index_in_chunk(self.m_index)].as_init_unsafe();
}
constexpr auto* operator->(this generic_iterator self)
{
return &*self;
}
};
using iterator = generic_iterator<Chunk*>;
using const_iterator = generic_iterator<const Chunk* const>;
constexpr iterator begin() { return iterator{0, m_chunks}; }
constexpr iterator end() { return iterator{m_size, m_chunks}; }
constexpr const_iterator begin() const
{
return const_iterator{0, {m_chunks.data(), m_chunks.size()}};
}
constexpr const_iterator end() const
{
return const_iterator{m_size, {m_chunks.data(), m_chunks.size()}};
}
};
} // namespace asl

View File

@ -0,0 +1,335 @@
// Copyright 2025 Steven Le Rouzic
//
// SPDX-License-Identifier: BSD-3-Clause
#include "asl/testing/testing.hpp"
#include "asl/tests/types.hpp"
#include "asl/tests/counting_allocator.hpp"
#include "asl/containers/chunked_buffer.hpp"
static_assert(asl::moveable<asl::chunked_buffer<int, 8>>);
static_assert(asl::moveable<asl::chunked_buffer<Copyable, 8>>);
static_assert(asl::moveable<asl::chunked_buffer<MoveableOnly, 8>>);
static_assert(asl::moveable<asl::chunked_buffer<Pinned, 8>>);
static_assert(asl::copyable<asl::chunked_buffer<int, 8>>);
static_assert(asl::copyable<asl::chunked_buffer<Copyable, 8>>);
static_assert(!asl::copyable<asl::chunked_buffer<MoveableOnly, 8>>);
static_assert(!asl::copyable<asl::chunked_buffer<Pinned, 8>>);
ASL_TEST(reserve)
{
asl::chunked_buffer<int, 16> b;
ASL_TEST_EXPECT(b.capacity() == 0);
ASL_TEST_EXPECT(b.size() == 0);
b.reserve_capacity(1);
ASL_TEST_EXPECT(b.capacity() == 16);
ASL_TEST_EXPECT(b.size() == 0);
b.reserve_capacity(5);
ASL_TEST_EXPECT(b.capacity() == 16);
ASL_TEST_EXPECT(b.size() == 0);
b.reserve_capacity(16);
ASL_TEST_EXPECT(b.capacity() == 16);
ASL_TEST_EXPECT(b.size() == 0);
b.reserve_capacity(35);
ASL_TEST_EXPECT(b.capacity() == 48);
ASL_TEST_EXPECT(b.size() == 0);
b.reserve_capacity(12);
ASL_TEST_EXPECT(b.capacity() == 48);
ASL_TEST_EXPECT(b.size() == 0);
}
ASL_TEST(resize_uninit)
{
asl::chunked_buffer<int, 16> b;
ASL_TEST_EXPECT(b.capacity() == 0);
ASL_TEST_EXPECT(b.size() == 0);
b.resize_uninit(1);
ASL_TEST_EXPECT(b.capacity() == 16);
ASL_TEST_EXPECT(b.size() == 1);
b.resize_uninit(5);
ASL_TEST_EXPECT(b.capacity() == 16);
ASL_TEST_EXPECT(b.size() == 5);
b.resize_uninit(16);
ASL_TEST_EXPECT(b.capacity() == 16);
ASL_TEST_EXPECT(b.size() == 16);
b.resize_uninit(35);
ASL_TEST_EXPECT(b.capacity() == 48);
ASL_TEST_EXPECT(b.size() == 35);
b.resize_uninit(12);
ASL_TEST_EXPECT(b.capacity() == 48);
ASL_TEST_EXPECT(b.size() == 12);
}
ASL_TEST(resize_zero)
{
asl::chunked_buffer<int, 4> b;
ASL_TEST_EXPECT(b.capacity() == 0);
ASL_TEST_EXPECT(b.size() == 0);
b.resize_zero(2);
for (isize_t i = 0; i < 2; ++i)
{
ASL_TEST_EXPECT(b[i] == 0);
}
b.resize_zero(18);
for (isize_t i = 0; i < 18; ++i)
{
ASL_TEST_EXPECT(b[i] == 0);
}
}
ASL_TEST(resize)
{
asl::chunked_buffer<int, 4> b;
ASL_TEST_EXPECT(b.capacity() == 0);
ASL_TEST_EXPECT(b.size() == 0);
b.resize(10);
for (isize_t i = 0; i < 10; ++i)
{
ASL_TEST_EXPECT(b[i] == 0);
}
b.resize(20, 8);
for (isize_t i = 0; i < 10; ++i)
{
ASL_TEST_EXPECT(b[i] == 0);
}
for (isize_t i = 10; i < 20; ++i)
{
ASL_TEST_EXPECT(b[i] == 8);
}
}
ASL_TEST(push)
{
asl::chunked_buffer<int, 4> b;
for (int i = 0; i < 100; ++i)
{
b.push(i);
}
for (int i = 0; i < 100; ++i)
{
ASL_TEST_EXPECT(b[i] == i);
}
b.resize(1000);
for (int i = 0; i < 100; ++i)
{
ASL_TEST_EXPECT(b[i] == i);
}
}
ASL_TEST(clear_destroy)
{
bool destroyed[5]{};
asl::chunked_buffer<DestructorObserver, 2> buf;
for (bool& d: destroyed)
{
buf.push(&d); // NOLINT
}
for (const bool d: destroyed)
{
ASL_TEST_EXPECT(!d);
}
buf.clear();
for (const bool d: destroyed)
{
ASL_TEST_EXPECT(d);
}
}
ASL_TEST(alloc_count) // NOLINT
{
CountingAllocator::Stats stats;
asl::chunked_buffer<int, 4, CountingAllocator> buf{CountingAllocator{&stats}};
ASL_TEST_EXPECT(stats.alive_bytes == 0);
ASL_TEST_EXPECT(stats.alloc_count == 0);
ASL_TEST_EXPECT(stats.dealloc_count == 0);
ASL_TEST_EXPECT(stats.any_alloc_count() == 0);
buf.push(1);
ASL_TEST_EXPECT(stats.alive_bytes > 0);
ASL_TEST_EXPECT(stats.dealloc_count == 0);
ASL_TEST_EXPECT(stats.any_alloc_count() == 1);
buf.push(2);
buf.push(3);
buf.push(4);
ASL_TEST_EXPECT(stats.alive_bytes > 0);
ASL_TEST_EXPECT(stats.dealloc_count == 0);
ASL_TEST_EXPECT(stats.any_alloc_count() == 1);
buf.push(5);
buf.push(6);
ASL_TEST_EXPECT(stats.alive_bytes > 0);
ASL_TEST_EXPECT(stats.dealloc_count == 0);
ASL_TEST_EXPECT(stats.any_alloc_count() == 2);
buf.resize(8, 8);
ASL_TEST_EXPECT(stats.alive_bytes > 0);
ASL_TEST_EXPECT(stats.dealloc_count == 0);
ASL_TEST_EXPECT(stats.any_alloc_count() == 2);
buf.resize(32, 8);
ASL_TEST_EXPECT(stats.alive_bytes > 0);
ASL_TEST_EXPECT(stats.dealloc_count == 0);
ASL_TEST_EXPECT(stats.any_alloc_count() == 9);
buf.resize(16, 0);
ASL_TEST_EXPECT(stats.alive_bytes > 0);
ASL_TEST_EXPECT(stats.dealloc_count == 0);
ASL_TEST_EXPECT(stats.any_alloc_count() == 9);
buf.clear();
ASL_TEST_EXPECT(stats.alive_bytes > 0);
ASL_TEST_EXPECT(stats.dealloc_count == 0);
ASL_TEST_EXPECT(stats.any_alloc_count() == 9);
buf.destroy();
ASL_TEST_EXPECT(stats.alive_bytes == 0);
ASL_TEST_EXPECT(stats.dealloc_count == 9);
ASL_TEST_EXPECT(stats.any_alloc_count() == 9);
}
ASL_TEST(move)
{
bool destroyed[5]{};
{
asl::chunked_buffer<DestructorObserver, 2> buf;
for (bool& d: destroyed)
{
buf.push(&d); // NOLINT
}
for (const bool d: destroyed)
{
ASL_TEST_EXPECT(!d);
}
asl::chunked_buffer<DestructorObserver, 2> buf2 = std::move(buf);
for (const bool d: destroyed)
{
ASL_TEST_EXPECT(!d);
}
buf = std::move(buf2);
buf2.destroy();
for (const bool d: destroyed)
{
ASL_TEST_EXPECT(!d);
}
}
for (const bool d: destroyed)
{
ASL_TEST_EXPECT(d);
}
}
ASL_TEST(copy) // NOLINT
{
asl::chunked_buffer<int, 4> buf;
for (int i = 0; i < 10; ++i) { buf.push(i); }
asl::chunked_buffer<int, 4> buf2 = buf;
ASL_TEST_EXPECT(buf.size() == 10);
ASL_TEST_EXPECT(buf2.size() == 10);
for (int i = 0; i < 10; ++i)
{
ASL_TEST_EXPECT(buf[i] == i);
ASL_TEST_EXPECT(buf2[i] == i);
}
buf2.resize(5);
buf = buf2;
ASL_TEST_EXPECT(buf.size() == 5);
ASL_TEST_EXPECT(buf2.size() == 5);
for (int i = 0; i < 5; ++i)
{
ASL_TEST_EXPECT(buf[i] == i);
ASL_TEST_EXPECT(buf2[i] == i);
}
buf.clear();
buf.resize(80, 12);
buf2 = buf;
ASL_TEST_EXPECT(buf.size() == 80);
ASL_TEST_EXPECT(buf2.size() == 80);
for (int i = 0; i < 80; ++i)
{
ASL_TEST_EXPECT(buf[i] == 12);
ASL_TEST_EXPECT(buf2[i] == 12);
}
}
ASL_TEST(iterator)
{
asl::chunked_buffer<int, 4> buf;
for (int i = 0; i < 30; ++i) { buf.push(100 + i); }
auto it = buf.begin();
auto end = buf.end();
for (int i = 0; i < 30; ++i)
{
ASL_TEST_ASSERT(it != end);
ASL_TEST_EXPECT(*it == 100 + i);
it++;
}
ASL_TEST_EXPECT(it == end);
static_assert(asl::same_as<decltype(*it), int&>);
asl::chunked_buffer<int, 8> buf2;
ASL_TEST_EXPECT(buf2.begin() == buf2.end());
}
ASL_TEST(const_iterator)
{
asl::chunked_buffer<int, 4> buf_value;
for (int i = 0; i < 30; ++i) { buf_value.push(100 + i); }
const auto& buf = buf_value;
auto it = buf.begin();
auto end = buf.end();
for (int i = 0; i < 30; ++i)
{
ASL_TEST_ASSERT(it != end);
ASL_TEST_EXPECT(*it == 100 + i);
++it;
}
ASL_TEST_EXPECT(it == end);
static_assert(asl::same_as<decltype(*it), const int&>);
asl::chunked_buffer<int, 8> buf2;
ASL_TEST_EXPECT(buf2.begin() == buf2.end());
}

View File

@ -40,6 +40,21 @@ T* alloc_new(allocator auto& a, auto&&... args)
return construct_at<T>(ptr, std::forward<decltype(args)>(args)...);
}
template<typename T>
T* alloc_uninit(allocator auto& a)
requires trivially_default_constructible<T>
{
void* ptr = a.alloc(layout::of<T>());
return reinterpret_cast<T*>(ptr); // NOLINT(*-reinterpret-cast)
}
template<typename T>
T* alloc_uninit_unsafe(allocator auto& a)
{
void* ptr = a.alloc(layout::of<T>());
return reinterpret_cast<T*>(ptr); // NOLINT(*-reinterpret-cast)
}
template<typename T>
void alloc_delete(allocator auto& a, T* ptr)
{

View File

@ -9,10 +9,12 @@ package(
cc_library(
name = "utils",
hdrs = [
"counting_allocator.hpp",
"types.hpp",
],
deps = [
"//asl/base",
"//asl/memory:allocator",
],
visibility = ["//asl:__subpackages__"],
)

View File

@ -0,0 +1,48 @@
// Copyright 2025 Steven Le Rouzic
//
// SPDX-License-Identifier: BSD-3-Clause
#include "asl/memory/allocator.hpp"
struct CountingAllocator
{
struct Stats
{
isize_t alloc_count{};
isize_t realloc_count{};
isize_t dealloc_count{};
isize_t alive_bytes{};
[[nodiscard]] constexpr isize_t any_alloc_count() const
{
return alloc_count + realloc_count;
}
};
Stats* stats;
[[nodiscard]]
void* alloc(const asl::layout& layout) const
{
stats->alloc_count += 1;
stats->alive_bytes += layout.size;
return asl::GlobalHeap::alloc(layout);
}
void* realloc(void* ptr, const asl::layout& old, const asl::layout& new_layout) const
{
stats->realloc_count += 1;
stats->alive_bytes += new_layout.size - old.size;
return asl::GlobalHeap::realloc(ptr, old, new_layout);
}
void dealloc(void* ptr, const asl::layout& layout) const
{
stats->dealloc_count += 1;
stats->alive_bytes -= layout.size;
asl::GlobalHeap::dealloc(ptr, layout);
}
constexpr bool operator==(const CountingAllocator&) const { return true; }
};
static_assert(asl::allocator<CountingAllocator>);

View File

@ -12,7 +12,7 @@
namespace asl
{
template<is_object T, int64_t kSize>
template<is_object T, isize_t kSize>
requires (kSize > 0)
struct array
{
@ -20,7 +20,7 @@ struct array
[[nodiscard]] constexpr bool is_empty() const { return false; }
[[nodiscard]] constexpr int64_t size() const { return kSize; }
[[nodiscard]] constexpr isize_t size() const { return kSize; }
constexpr auto data(this auto&& self)
{
@ -38,14 +38,14 @@ struct array
return contiguous_iterator{self.data() + kSize};
}
template<int64_t kSpanSize>
template<isize_t kSpanSize>
requires (kSpanSize == kSize || kSpanSize == dynamic_size)
constexpr operator span<const T, kSpanSize>() const // NOLINT(*explicit*)
{
return as_span();
}
template<int64_t kSpanSize>
template<isize_t kSpanSize>
requires (kSpanSize == kSize || kSpanSize == dynamic_size)
constexpr operator span<T, kSpanSize>() // NOLINT(*explicit*)
{

View File

@ -10,6 +10,8 @@ static_assert(asl::size_of<int> == asl::size_of<asl::maybe_uninit<int>>);
static_assert(asl::align_of<int> == asl::align_of<asl::maybe_uninit<int>>);
#define TEST_TYPE_PROPERTIES(PRP) \
static_assert(asl::PRP<asl::maybe_uninit<int>> == asl::PRP<int>); \
static_assert(asl::PRP<asl::maybe_uninit<void*>> == asl::PRP<void*>); \
static_assert(asl::PRP<asl::maybe_uninit<TrivialType>> == asl::PRP<TrivialType>); \
static_assert(asl::PRP<asl::maybe_uninit<TrivialTypeDefaultValue>> == asl::PRP<TrivialTypeDefaultValue>); \
static_assert(asl::PRP<asl::maybe_uninit<WithDestructor>> == asl::PRP<WithDestructor>); \
@ -17,6 +19,8 @@ static_assert(asl::align_of<int> == asl::align_of<asl::maybe_uninit<int>>);
static_assert(asl::PRP<asl::maybe_uninit<MoveableOnly>> == asl::PRP<MoveableOnly>); \
static_assert(asl::PRP<asl::maybe_uninit<Pinned>> == asl::PRP<Pinned>);
// @Todo(C++26) We expect this to break once trivial unions land.
// https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2025/p3074r7.html#just-make-it-work
TEST_TYPE_PROPERTIES(trivially_default_constructible);
TEST_TYPE_PROPERTIES(trivially_copy_constructible);
TEST_TYPE_PROPERTIES(trivially_move_constructible);

View File

@ -1 +1 @@
C++26: constexpr cast from void* https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2738r1.pdf