Files
asl/asl/containers/buffer.hpp

495 lines
14 KiB
C++

// Copyright 2025 Steven Le Rouzic
//
// SPDX-License-Identifier: BSD-3-Clause
#pragma once
#include "asl/base/meta.hpp"
#include "asl/memory/allocator.hpp"
#include "asl/memory/memory.hpp"
#include "asl/base/annotations.hpp"
#include "asl/base/assert.hpp"
#include "asl/base/bit.hpp"
#include "asl/types/span.hpp"
#include "asl/hashing/hash.hpp"
namespace asl
{
template<typename T, allocator Allocator = DefaultAllocator>
requires is_object<T> && moveable<T>
class buffer
{
T* m_data{};
isize_t m_capacity{};
static constexpr size_t kOnHeapMask = 0x8000'0000'0000'0000ULL;
// bit 63 : 1 = on heap, 0 = inline
// bits [62:56] : size when inline
// bits [62:0] : size when on heap
size_t m_size_encoded_{};
ASL_NO_UNIQUE_ADDRESS Allocator m_allocator;
static constexpr isize_t kInlineRegionSize = size_of<T*> + size_of<isize_t> + size_of<size_t>;
public:
static constexpr isize_t kInlineCapacity = []() {
// 1 byte is used for size inline in m_size_encoded.
// This is enough because we have at most 24 bytes available,
// so 23 chars of capacity.
const isize_t available_size = kInlineRegionSize - 1;
return available_size / size_of<T>;
}();
private:
static_assert(align_of<T> <= align_of<T*>);
static_assert(align_of<T*> == align_of<isize_t>);
static_assert(align_of<T*> == align_of<size_t>);
[[nodiscard]] constexpr size_t load_size_encoded() const
{
size_t s{};
asl::memcpy(&s, &m_size_encoded_, sizeof(size_t));
return s;
}
constexpr void store_size_encoded(size_t encoded)
{
asl::memcpy(&m_size_encoded_, &encoded, sizeof(size_t));
}
static constexpr bool is_on_heap(size_t size_encoded)
{
return (size_encoded & kOnHeapMask) != 0;
}
static constexpr size_t encode_size_heap(isize_t size)
{
return static_cast<size_t>(size) | kOnHeapMask;
}
static constexpr isize_t decode_size(size_t size_encoded)
{
if constexpr (kInlineCapacity == 0)
{
return is_on_heap(size_encoded)
? static_cast<isize_t>(size_encoded & (~kOnHeapMask))
: 0;
}
else
{
return is_on_heap(size_encoded)
? static_cast<isize_t>(size_encoded & (~kOnHeapMask))
: static_cast<isize_t>(size_encoded >> 56U);
}
}
[[nodiscard]] constexpr bool is_on_heap() const
{
return is_on_heap(load_size_encoded());
}
constexpr void* push_uninit()
{
const isize_t sz = size();
resize_uninit_inner(sz + 1);
return data() + sz;
}
constexpr void resize_uninit_inner(isize_t new_size)
{
if constexpr (!trivially_destructible<T>)
{
const isize_t old_size = size();
if (new_size < old_size)
{
destroy_n(data() + new_size, old_size - new_size);
}
}
reserve_capacity(new_size);
set_size(new_size);
}
constexpr void set_size_inline(isize_t new_size)
{
ASL_ASSERT(new_size >= 0 && new_size <= kInlineCapacity);
const size_t size_encoded =
(load_size_encoded() & size_t{0x00ff'ffff'ffff'ffff})
| (bit_cast<size_t>(new_size) << 56U);
store_size_encoded(size_encoded);
}
constexpr void set_size(isize_t new_size)
{
ASL_ASSERT(new_size >= 0 && new_size <= capacity());
if (is_on_heap())
{
store_size_encoded(encode_size_heap(new_size));
}
else
{
set_size_inline(new_size);
}
}
// NOLINTNEXTLINE(*-rvalue-reference-param-not-moved)
void move_from_other(buffer&& other, bool assign)
{
if (other.is_on_heap())
{
// If the other in on heap, destroy here and adopt their
// data. We'll soon adopt the allocator as well.
destroy();
m_data = other.m_data;
m_capacity = other.m_capacity;
store_size_encoded(other.load_size_encoded());
}
else if (!assign || m_allocator == other.m_allocator)
{
// If allocators are compatible, we can move other's inline
// data here, even if it's on heap here, because that
// memory can be freed by other's allocator, which we will
// soon adopt.
//
// @Note There is an argument to be made for not doing this and
// instead destroying our data here and moving into inline
// storage, which frees one allocation. But also this avoids
// freeing. So I don't know.
// Maybe If this storage is much much larger than the inline
// data, it's worth freeing.
const isize_t other_n = other.size();
const isize_t this_n = size();
resize_uninit_inner(other_n);
if (other_n <= this_n)
{
relocate_assign_n(data(), other.data(), other_n);
}
else
{
relocate_assign_n(data(), other.data(), this_n);
relocate_uninit_n(data() + this_n, other.data() + this_n, other_n - this_n);
}
}
else
{
// Otherwise, if we have to free, because the allocators are
// not compatible, well we free and move into our inline
// storage region.
// There is an optimization here when the data is trivially
// move constructible (which implies trivially destructible),
// we copy the whole inline region, which includes the size.
// Very magic.
destroy();
if constexpr (trivially_move_constructible<T>)
{
ASL_ASSERT(!is_on_heap());
asl::memcpy(this, &other, kInlineRegionSize);
}
else
{
const isize_t n = other.size();
ASL_ASSERT(n <= kInlineCapacity);
resize_uninit_inner(n);
ASL_ASSERT(!is_on_heap());
relocate_uninit_n(data(), other.data(), n);
}
}
other.set_size_inline(0);
if (assign)
{
m_allocator = std::move(other.m_allocator);
}
}
void copy_range(span<const T> to_copy)
{
const isize_t this_size = size();
const isize_t new_size = to_copy.size();
resize_uninit_inner(to_copy.size());
ASL_ASSERT(capacity() >= new_size);
ASL_ASSERT(size() == to_copy.size());
if (new_size <= this_size)
{
copy_assign_n(data(), to_copy.data(), new_size);
}
else
{
copy_assign_n(data(), to_copy.data(), this_size);
copy_uninit_n(data() + this_size, to_copy.data() + this_size, new_size - this_size);
}
}
template<typename... Args>
void resize_inner(isize_t new_size, Args&&... args)
requires constructible_from<T, Args&&...>
{
ASL_ASSERT(new_size >= 0);
isize_t old_size = size();
resize_uninit_inner(new_size);
T* data_ptr = data();
T* end = data_ptr + new_size;
// NOLINTNEXTLINE(*-pointer-arithmetic)
for (T* it = data_ptr + old_size; it < end; ++it)
{
construct_at<T>(it, std::forward<Args>(args)...);
}
}
public:
constexpr buffer() requires default_constructible<Allocator> = default;
explicit constexpr buffer(span<const T> s)
requires default_constructible<Allocator>
: buffer{}
{
copy_range(s);
}
explicit constexpr buffer(Allocator allocator)
: m_allocator{std::move(allocator)}
{}
explicit constexpr buffer(span<const T> s, Allocator allocator)
: m_allocator{std::move(allocator)}
{
copy_range(s);
}
constexpr buffer(const buffer& other)
requires copy_constructible<Allocator> && copyable<T>
: m_allocator{other.m_allocator}
{
copy_range(other);
}
constexpr buffer(buffer&& other)
: buffer(std::move(other.m_allocator))
{
move_from_other(std::move(other), false);
}
constexpr buffer& operator=(const buffer& other)
requires copyable<T>
{
if (&other == this) { return *this; }
copy_range(other);
return *this;
}
constexpr buffer& operator=(buffer&& other)
{
if (&other == this) { return *this; }
move_from_other(std::move(other), true);
return *this;
}
~buffer()
{
destroy();
}
constexpr Allocator allocator_copy() const
requires copy_constructible<Allocator>
{
return m_allocator;
}
constexpr Allocator& allocator() { return m_allocator; }
[[nodiscard]] constexpr isize_t size() const
{
return decode_size(load_size_encoded());
}
[[nodiscard]] constexpr bool is_empty() const { return size() == 0; }
[[nodiscard]] constexpr isize_t capacity() const
{
if constexpr (kInlineCapacity == 0)
{
return m_capacity;
}
else
{
return is_on_heap() ? m_capacity : kInlineCapacity;
}
}
void clear()
{
const isize_t current_size = size();
if (current_size == 0) { return; }
destroy_n(data(), current_size);
set_size(0);
}
void destroy()
{
clear();
if (is_on_heap())
{
if (m_data != nullptr)
{
auto current_layout = layout::array<T>(m_capacity);
m_allocator.dealloc(m_data, current_layout);
}
set_size_inline(0);
}
}
void reserve_capacity(isize_t new_capacity)
{
ASL_ASSERT(new_capacity >= 0);
if (new_capacity <= capacity()) { return; }
ASL_ASSERT(new_capacity > kInlineCapacity);
new_capacity = static_cast<isize_t>(bit_ceil(static_cast<uint64_t>(new_capacity)));
T* old_data = data();
const isize_t old_capacity = capacity();
const isize_t current_size = size();
const bool currently_on_heap = is_on_heap();
auto old_layout = layout::array<T>(old_capacity);
auto new_layout = layout::array<T>(new_capacity);
if (currently_on_heap && trivially_move_constructible<T>)
{
m_data = static_cast<T*>(m_allocator.realloc(m_data, old_layout, new_layout));
m_capacity = new_capacity;
return;
}
T* new_data = static_cast<T*>(m_allocator.alloc(new_layout));
relocate_uninit_n(new_data, old_data, current_size);
if (currently_on_heap)
{
m_allocator.dealloc(old_data, old_layout);
}
m_data = new_data;
m_capacity = new_capacity;
store_size_encoded(encode_size_heap(current_size));
}
constexpr void resize_uninit(isize_t new_size)
requires trivially_default_constructible<T>
{
resize_uninit_inner(new_size);
}
constexpr void resize_zero(isize_t new_size)
requires trivially_default_constructible<T>
{
const isize_t old_size = size();
resize_uninit_inner(new_size);
if (new_size > old_size)
{
memzero(data() + old_size, (new_size - old_size) * size_of<T>);
}
}
void resize(isize_t new_size)
requires default_constructible<T>
{
if constexpr (trivially_default_constructible<T>)
{
resize_zero(new_size);
}
else
{
resize_inner(new_size);
}
}
void resize(isize_t new_size, const T& value)
{
resize_inner(new_size, value);
}
constexpr T& push(auto&&... args)
requires constructible_from<T, decltype(args)&&...>
{
void* uninit = push_uninit();
T* init = construct_at<T>(uninit, std::forward<decltype(args)>(args)...);
return *init;
}
auto data(this auto&& self)
{
using return_type = as_ptr_t<copy_const_t<un_ref_t<decltype(self)>, T>>;
// NOLINTNEXTLINE(*-reinterpret-cast)
auto&& buffer = reinterpret_cast<copy_cref_t<decltype(self), class buffer>>(self);
if constexpr (kInlineCapacity == 0)
{
return return_type{ buffer.m_data };
}
else
{
return buffer.is_on_heap()
? return_type{ buffer.m_data }
// NOLINTNEXTLINE(*-reinterpret-cast)
: std::launder(reinterpret_cast<return_type>(&buffer));
}
}
constexpr auto begin(this auto&& self)
{
using type = copy_const_t<un_ref_t<decltype(self)>, T>;
return contiguous_iterator<type>{self.data()};
}
constexpr auto end(this auto&& self)
{
using type = copy_const_t<un_ref_t<decltype(self)>, T>;
return contiguous_iterator<type>{self.data() + self.size()};
}
constexpr operator span<const T>() const // NOLINT(*explicit*)
{
return as_span();
}
constexpr operator span<T>() // NOLINT(*explicit*)
{
return as_span();
}
constexpr auto as_span(this auto&& self)
{
using type = copy_const_t<un_ref_t<decltype(self)>, T>;
return span<type>{self.data(), self.size()};
}
constexpr auto&& operator[](this auto&& self, isize_t i)
{
ASL_ASSERT(i >= 0 && i < self.size());
return std::forward_like<decltype(self)>(std::forward<decltype(self)>(self).data()[i]);
}
template<typename H>
requires hashable<T>
friend H AslHashValue(H h, const buffer& b)
{
return H::combine_contiguous(std::move(h), b.as_span());
}
};
} // namespace asl