839 lines
21 KiB
C
839 lines
21 KiB
C
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <inttypes.h>
|
|
#include <assert.h>
|
|
#include <stdbool.h>
|
|
#include <string.h>
|
|
|
|
#define ET_NONE 0x00
|
|
#define ET_REL 0x01
|
|
#define ET_EXEC 0x02
|
|
#define ET_DYN 0x03
|
|
#define ET_CORE 0x04
|
|
|
|
struct Elf32Header
|
|
{
|
|
uint8_t ident[16];
|
|
uint16_t type;
|
|
uint16_t machine;
|
|
uint32_t version;
|
|
uint32_t entry;
|
|
uint32_t phoff;
|
|
uint32_t shoff;
|
|
uint32_t flags;
|
|
uint16_t ehsize;
|
|
uint16_t phentsize;
|
|
uint16_t phnum;
|
|
uint16_t shentsize;
|
|
uint16_t shnum;
|
|
uint16_t shstrndx;
|
|
};
|
|
|
|
#define PT_NULL 0x00000000
|
|
#define PT_LOAD 0x00000001
|
|
#define PT_DYNAMIC 0x00000002
|
|
#define PT_INTERP 0x00000003
|
|
#define PT_NOTE 0x00000004
|
|
#define PT_SHLIB 0x00000005
|
|
#define PT_PHDR 0x00000006
|
|
#define PT_TLS 0x00000007
|
|
|
|
#define PF_X 0x1
|
|
#define PF_W 0x2
|
|
#define PF_R 0x4
|
|
|
|
struct Elf32ProgramHeader
|
|
{
|
|
uint32_t type;
|
|
uint32_t offset;
|
|
uint32_t vaddr;
|
|
uint32_t paddr;
|
|
uint32_t filesz;
|
|
uint32_t memsz;
|
|
uint32_t flags;
|
|
uint32_t align;
|
|
};
|
|
|
|
bool load_elf(const char* file, char* mem, uint32_t mem_size, uint32_t* start_address)
|
|
{
|
|
FILE* fp = fopen(file, "rb");
|
|
if (fp == NULL)
|
|
{
|
|
printf("Couldn't open input file\n");
|
|
return false;
|
|
}
|
|
|
|
struct Elf32Header header;
|
|
size_t read = fread(&header, sizeof(struct Elf32Header), 1, fp);
|
|
if (read != 1)
|
|
{
|
|
printf("ELF header too small\n");
|
|
return false;
|
|
}
|
|
|
|
static uint8_t kValidIdent[7] = {
|
|
0x7f, 0x45, 0x4c, 0x46,
|
|
1, 1, 1
|
|
};
|
|
if (memcmp(kValidIdent, header.ident, 7) != 0)
|
|
{
|
|
printf("Invalid ELF header\n");
|
|
return false;
|
|
}
|
|
|
|
if (header.type != ET_EXEC)
|
|
{
|
|
printf("Can only link EXEC ELF files\n");
|
|
return false;
|
|
}
|
|
|
|
memset(mem, 0, mem_size);
|
|
|
|
assert(header.phnum == 0 || header.phentsize == sizeof(struct Elf32ProgramHeader));
|
|
for (uint32_t i = 0; i < header.phnum; ++i)
|
|
{
|
|
struct Elf32ProgramHeader pheader;
|
|
|
|
fseek(fp, header.phoff + i * header.phentsize, SEEK_SET);
|
|
read = fread(&pheader, sizeof(struct Elf32ProgramHeader), 1, fp);
|
|
if (read != 1)
|
|
{
|
|
printf("Error reading program header at index %u\n", i);
|
|
return false;
|
|
}
|
|
|
|
if (pheader.type == PT_LOAD)
|
|
{
|
|
if (pheader.paddr + pheader.memsz > mem_size)
|
|
{
|
|
printf("Memory not large enough for ELF file\n");
|
|
return false;
|
|
}
|
|
|
|
fseek(fp, pheader.offset, SEEK_SET);
|
|
read = fread(mem + pheader.paddr, pheader.filesz, 1, fp);
|
|
if (read != 1)
|
|
{
|
|
printf("Error when copying ELF segment\n");
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (header.entry > mem_size)
|
|
{
|
|
printf("Entry address out of bounds\n");
|
|
return false;
|
|
}
|
|
|
|
*start_address = header.entry;
|
|
fclose(fp);
|
|
|
|
return true;
|
|
}
|
|
|
|
inline uint32_t sign_extend(uint32_t word, uint32_t size)
|
|
{
|
|
const uint32_t mask = 1U << (size - 1);
|
|
return (word ^ mask) - mask;
|
|
}
|
|
|
|
struct Instruction
|
|
{
|
|
uint8_t opcode;
|
|
uint8_t rs1;
|
|
uint8_t rs2;
|
|
uint8_t rd;
|
|
uint8_t funct3;
|
|
uint8_t funct7;
|
|
uint32_t imm;
|
|
};
|
|
|
|
struct Instruction decode_r_type(uint32_t word)
|
|
{
|
|
struct Instruction instruction = {0};
|
|
instruction.opcode = word & 0x7F;
|
|
instruction.rd = (word >> 7) & 0x1F;
|
|
instruction.funct3 = (word >> 12) & 0x07;
|
|
instruction.rs1 = (word >> 15) & 0x1F;
|
|
instruction.rs2 = (word >> 20) & 0x1F;
|
|
instruction.funct7 = word >> 25;
|
|
return instruction;
|
|
};
|
|
|
|
struct Instruction decode_i_type(uint32_t word)
|
|
{
|
|
struct Instruction instruction = {0};
|
|
instruction.opcode = word & 0x7F;
|
|
instruction.rd = (word >> 7) & 0x1F;
|
|
instruction.funct3 = (word >> 12) & 0x07;
|
|
instruction.rs1 = (word >> 15) & 0x1F;
|
|
instruction.imm = sign_extend(word >> 20, 12);
|
|
return instruction;
|
|
};
|
|
|
|
struct Instruction decode_s_type(uint32_t word)
|
|
{
|
|
struct Instruction instruction = {0};
|
|
instruction.opcode = word & 0x7F;
|
|
instruction.funct3 = (word >> 12) & 0x07;
|
|
instruction.rs1 = (word >> 15) & 0x1F;
|
|
instruction.rs2 = (word >> 20) & 0x1F;
|
|
instruction.imm = sign_extend(((word >> 7) & 0x1F) | (word >> 25), 12);
|
|
return instruction;
|
|
};
|
|
|
|
struct Instruction decode_b_type(uint32_t word)
|
|
{
|
|
struct Instruction instruction = decode_s_type(word);
|
|
instruction.imm = ((instruction.imm << 11) & 0x800) | (instruction.imm & 0xfffff7ff);
|
|
return instruction;
|
|
};
|
|
|
|
struct Instruction decode_u_type(uint32_t word)
|
|
{
|
|
struct Instruction instruction = {0};
|
|
instruction.opcode = word & 0x7F;
|
|
instruction.rd = (word >> 7) & 0x1F;
|
|
instruction.imm = word & 0xFFFFF000;
|
|
return instruction;
|
|
};
|
|
|
|
struct Instruction decode_j_type(uint32_t word)
|
|
{
|
|
struct Instruction instruction = {0};
|
|
instruction.opcode = word & 0x7F;
|
|
instruction.rd = (word >> 7) & 0x1F;
|
|
instruction.imm = sign_extend(
|
|
((word & 0x80000000) >> 11) |
|
|
((word & 0x000FF000) >> 0) |
|
|
((word & 0x00100000) >> 9) |
|
|
((word & 0x7FE00000) >> 20), 21);
|
|
return instruction;
|
|
}
|
|
|
|
struct Hart
|
|
{
|
|
uint32_t pc;
|
|
uint32_t regs[32];
|
|
char* mem;
|
|
uint32_t mem_size;
|
|
};
|
|
|
|
void execute_op_imm(struct Hart* hart, uint32_t instruction)
|
|
{
|
|
const struct Instruction inst = decode_i_type(instruction);
|
|
if (inst.rd == 0) return;
|
|
|
|
switch (inst.funct3)
|
|
{
|
|
case 0: // ADDI
|
|
hart->regs[inst.rd] = hart->regs[inst.rs1] + inst.imm;
|
|
break;
|
|
case 1: // SLLI
|
|
hart->regs[inst.rd] = hart->regs[inst.rs1] << (inst.imm & 0x1F);
|
|
break;
|
|
case 2: // SLTI
|
|
hart->regs[inst.rd] = (int32_t)hart->regs[inst.rs1] < (int32_t)inst.imm ? 1 : 0;
|
|
break;
|
|
case 3: // SLTIU
|
|
hart->regs[inst.rd] = hart->regs[inst.rs1] < inst.imm ? 1 : 0;
|
|
break;
|
|
case 4: // XORI
|
|
hart->regs[inst.rd] = hart->regs[inst.rs1] ^ inst.imm;
|
|
break;
|
|
case 5: // SRLI, SRAI
|
|
{
|
|
const uint32_t shamt = inst.imm & 0x1F;
|
|
uint32_t res = hart->regs[inst.rs1] >> shamt;
|
|
if ((inst.imm & 0x400) && shamt > 0) { res = sign_extend(res, 32 - shamt); }
|
|
hart->regs[inst.rd] = res;
|
|
break;
|
|
}
|
|
case 6: // ORI
|
|
hart->regs[inst.rd] = hart->regs[inst.rs1] | inst.imm;
|
|
break;
|
|
case 7: // ANDI
|
|
hart->regs[inst.rd] = hart->regs[inst.rs1] & inst.imm;
|
|
break;
|
|
default:
|
|
assert(!"Unhandled OP-IMM");
|
|
}
|
|
}
|
|
|
|
void execute_op(struct Hart* hart, uint32_t instruction)
|
|
{
|
|
const struct Instruction inst = decode_r_type(instruction);
|
|
if (inst.rd == 0) return;
|
|
|
|
switch (inst.funct3)
|
|
{
|
|
case 0: // ADD, SUB
|
|
if (instruction & 0x40000000)
|
|
{
|
|
hart->regs[inst.rd] = hart->regs[inst.rs1] - hart->regs[inst.rs2];
|
|
}
|
|
else
|
|
{
|
|
hart->regs[inst.rd] = hart->regs[inst.rs1] + hart->regs[inst.rs2];
|
|
}
|
|
break;
|
|
case 1: // SLL
|
|
hart->regs[inst.rd] = hart->regs[inst.rs1] << (hart->regs[inst.rs2] & 0x1F);
|
|
break;
|
|
case 2: // SLT
|
|
hart->regs[inst.rd] = (int32_t)hart->regs[inst.rs1] < (int32_t)hart->regs[inst.rs2] ? 1 : 0;
|
|
break;
|
|
case 3: // SLTU
|
|
hart->regs[inst.rd] = hart->regs[inst.rs1] < hart->regs[inst.rs2] ? 1 : 0;
|
|
break;
|
|
case 4: // XOR
|
|
hart->regs[inst.rd] = hart->regs[inst.rs1] ^ hart->regs[inst.rs2];
|
|
break;
|
|
case 5: // SRL, SRA
|
|
{
|
|
const uint32_t shamt = hart->regs[inst.rs2] & 0x1F;
|
|
uint32_t res = hart->regs[inst.rs1] >> shamt;
|
|
if ((instruction & 0x40000000) && shamt > 0) { res = sign_extend(res, 32 - shamt); }
|
|
hart->regs[inst.rd] = res;
|
|
break;
|
|
}
|
|
case 6: // OR
|
|
hart->regs[inst.rd] = hart->regs[inst.rs1] | hart->regs[inst.rs2];
|
|
break;
|
|
case 7: // AND
|
|
hart->regs[inst.rd] = hart->regs[inst.rs1] & hart->regs[inst.rs2];
|
|
break;
|
|
default:
|
|
assert(!"Unhandled OP-IMM");
|
|
}
|
|
}
|
|
|
|
void execute_branch(struct Hart* hart, uint32_t instruction)
|
|
{
|
|
const struct Instruction inst = decode_b_type(instruction);
|
|
const uint32_t r1 = hart->regs[inst.rs1];
|
|
const uint32_t r2 = hart->regs[inst.rs2];
|
|
bool take_branch = false;
|
|
|
|
switch (inst.funct3)
|
|
{
|
|
case 0: take_branch = (r1 == r2); break;
|
|
case 1: take_branch = (r1 != r2); break;
|
|
case 4: take_branch = (r1 < r2); break;
|
|
case 5: take_branch = (r1 >= r2); break;
|
|
case 6: take_branch = ((int32_t)r1 < (int32_t)r2); break;
|
|
case 7: take_branch = ((int32_t)r1 >= (int32_t)r2); break;
|
|
}
|
|
|
|
if (take_branch)
|
|
{
|
|
hart->pc += inst.imm;
|
|
}
|
|
else
|
|
{
|
|
hart->pc += 4;
|
|
}
|
|
}
|
|
|
|
inline uint32_t load_size(struct Hart* hart, uint32_t address, uint32_t size)
|
|
{
|
|
if ((address & 0x80000000) == 0)
|
|
{
|
|
assert(address + size < hart->mem_size);
|
|
uint32_t value = 0;
|
|
memcpy(&value, hart->mem + address, size);
|
|
return value;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
uint32_t load_byte(struct Hart* hart, uint32_t address)
|
|
{
|
|
return load_size(hart, address, 1);
|
|
}
|
|
|
|
uint32_t load_half(struct Hart* hart, uint32_t address)
|
|
{
|
|
return load_size(hart, address, 2);
|
|
}
|
|
|
|
uint32_t load_word(struct Hart* hart, uint32_t address)
|
|
{
|
|
return load_size(hart, address, 4);
|
|
}
|
|
|
|
inline void store_size(struct Hart* hart, uint32_t address, uint32_t value, uint32_t size)
|
|
{
|
|
if ((address & 0x80000000) == 0)
|
|
{
|
|
assert(address + size < hart->mem_size);
|
|
memcpy(hart->mem + address, &value, size);
|
|
}
|
|
else if (address == 0x80000000)
|
|
{
|
|
fwrite(&value, 1, size, stdout);
|
|
}
|
|
}
|
|
|
|
void store_byte(struct Hart* hart, uint32_t address, uint8_t value)
|
|
{
|
|
store_size(hart, address, value, 1);
|
|
}
|
|
|
|
void store_half(struct Hart* hart, uint32_t address, uint16_t value)
|
|
{
|
|
store_size(hart, address, value, 2);
|
|
}
|
|
|
|
void store_word(struct Hart* hart, uint32_t address, uint32_t value)
|
|
{
|
|
store_size(hart, address, value, 4);
|
|
}
|
|
|
|
void execute_op_load(struct Hart* hart, uint32_t instruction)
|
|
{
|
|
const struct Instruction inst = decode_i_type(instruction);
|
|
const uint32_t address = hart->regs[inst.rs1] + inst.imm;
|
|
|
|
uint32_t value = 0;
|
|
|
|
switch (inst.funct3 & 0x03)
|
|
{
|
|
case 0:
|
|
value = load_byte(hart, address);
|
|
if ((inst.funct3 & 0x40) == 0)
|
|
{
|
|
value = sign_extend(value, 8);
|
|
}
|
|
break;
|
|
case 1:
|
|
value = load_half(hart, address);
|
|
if ((inst.funct3 & 0x40) == 0)
|
|
{
|
|
value = sign_extend(value, 16);
|
|
}
|
|
break;
|
|
case 2:
|
|
value = load_byte(hart, address);
|
|
break;
|
|
default:
|
|
assert(!"Unhandled load size");
|
|
break;
|
|
}
|
|
|
|
if (inst.rd != 0)
|
|
{
|
|
hart->regs[inst.rd] = value;
|
|
}
|
|
}
|
|
|
|
void execute_op_store(struct Hart* hart, uint32_t instruction)
|
|
{
|
|
const struct Instruction inst = decode_s_type(instruction);
|
|
const uint32_t address = hart->regs[inst.rs1] + inst.imm;
|
|
const uint32_t value = hart->regs[inst.rs2];
|
|
|
|
switch (inst.funct3 & 0x03)
|
|
{
|
|
case 0: store_byte(hart, address, value & 0xFF); break;
|
|
case 1: store_half(hart, address, value & 0xFFFF); break;
|
|
case 2: store_word(hart, address, value); break;
|
|
default:
|
|
assert(!"Unhandled store size");
|
|
break;
|
|
}
|
|
}
|
|
|
|
void execute_misc_mem(struct Hart* hart, uint32_t instruction)
|
|
{
|
|
const struct Instruction inst = decode_i_type(instruction);
|
|
|
|
if (inst.funct3 == 0)
|
|
{
|
|
// FENCE
|
|
}
|
|
else
|
|
{
|
|
assert(!"Unhandled MISC-MEM instruction");
|
|
}
|
|
}
|
|
|
|
void execute_system(struct Hart* hart, uint32_t instruction)
|
|
{
|
|
const struct Instruction inst = decode_i_type(instruction);
|
|
|
|
if (inst.funct3 == 0 && inst.rs1 == 0 && inst.rd == 0)
|
|
{
|
|
if (inst.imm == 0)
|
|
{
|
|
// ECALL
|
|
}
|
|
else if (inst.imm == 1)
|
|
{
|
|
// EBREAK
|
|
}
|
|
else
|
|
{
|
|
assert(!"Unhandled SYSTEM/PRIV instruction");
|
|
}
|
|
}
|
|
else
|
|
{
|
|
assert(!"Unhandled SYSTEM instruction");
|
|
}
|
|
}
|
|
|
|
void execute(struct Hart* hart, uint32_t instruction)
|
|
{
|
|
switch (instruction & 0x7f)
|
|
{
|
|
case 0x03:
|
|
execute_op_load(hart, instruction);
|
|
hart->pc += 4;
|
|
break;
|
|
case 0x0F:
|
|
execute_misc_mem(hart, instruction);
|
|
hart->pc += 4;
|
|
break;
|
|
case 0x13:
|
|
execute_op_imm(hart, instruction);
|
|
hart->pc += 4;
|
|
break;
|
|
case 0x17: // AUIPC
|
|
{
|
|
struct Instruction inst = decode_u_type(instruction);
|
|
if (inst.rd != 0)
|
|
{
|
|
hart->regs[inst.rd] = inst.imm + hart->pc;
|
|
}
|
|
hart->pc += 4;
|
|
break;
|
|
}
|
|
case 0x23:
|
|
execute_op_store(hart, instruction);
|
|
hart->pc += 4;
|
|
break;
|
|
case 0x33:
|
|
execute_op(hart, instruction);
|
|
hart->pc += 4;
|
|
break;
|
|
case 0x37: // LUI
|
|
{
|
|
struct Instruction inst = decode_u_type(instruction);
|
|
if (inst.rd != 0)
|
|
{
|
|
hart->regs[inst.rd] = inst.imm;
|
|
}
|
|
hart->pc += 4;
|
|
break;
|
|
}
|
|
case 0x63:
|
|
execute_branch(hart, instruction);
|
|
break;
|
|
case 0x67: // JALR
|
|
{
|
|
struct Instruction inst = decode_i_type(instruction);
|
|
assert(inst.funct3 == 0);
|
|
if (inst.rd != 0)
|
|
{
|
|
hart->regs[inst.rd] = hart->pc + 4;
|
|
}
|
|
hart->pc = (hart->regs[inst.rs1] + inst.imm) & 0xFFFFFFFE;
|
|
break;
|
|
}
|
|
case 0x6F: // JAL
|
|
{
|
|
struct Instruction inst = decode_j_type(instruction);
|
|
if (inst.rd != 0)
|
|
{
|
|
hart->regs[inst.rd] = hart->pc + 4;
|
|
}
|
|
hart->pc += inst.imm;
|
|
break;
|
|
}
|
|
case 0x73:
|
|
{
|
|
execute_system(hart, instruction);
|
|
hart->pc += 4;
|
|
break;
|
|
}
|
|
default:
|
|
assert(!"Unhandled opcode");
|
|
}
|
|
|
|
assert(hart->regs[0] == 0);
|
|
}
|
|
|
|
void test_addi()
|
|
{
|
|
struct Hart hart = {0};
|
|
|
|
execute(&hart, 0x00500093); // addi x1, x0, 5
|
|
assert(hart.regs[1] == 5);
|
|
|
|
execute(&hart, 0xffe00093); // addi, x1, x0, -2
|
|
assert(hart.regs[1] == 0xfffffffe);
|
|
}
|
|
|
|
void test_slti_sltiu()
|
|
{
|
|
struct Hart hart = {0};
|
|
|
|
hart.regs[1] = 5;
|
|
|
|
execute(&hart, 0x00f0b113); // sltiu x2, x1, 15
|
|
assert(hart.regs[2] == 1);
|
|
|
|
execute(&hart, 0x0050b113); // sltiu x2, x1, 15
|
|
assert(hart.regs[2] == 0);
|
|
|
|
execute(&hart, 0x0010b113); // sltiu x2, x1, 15
|
|
assert(hart.regs[2] == 0);
|
|
|
|
execute(&hart, 0x00f0a113); // slti x2, x1, 15
|
|
assert(hart.regs[2] == 1);
|
|
|
|
execute(&hart, 0x0050a113); // slti x2, x1, 15
|
|
assert(hart.regs[2] == 0);
|
|
|
|
execute(&hart, 0x0010a113); // slti x2, x1, 15
|
|
assert(hart.regs[2] == 0);
|
|
|
|
execute(&hart, 0xffb0a113); // slti x2, x1, -5
|
|
assert(hart.regs[2] == 0);
|
|
|
|
hart.regs[1] = (uint32_t)-20;
|
|
|
|
execute(&hart, 0xffb0a113); // slti x2, x1, -5
|
|
assert(hart.regs[2] == 1);
|
|
}
|
|
|
|
void test_andi_ori_xori()
|
|
{
|
|
struct Hart hart = {0};
|
|
|
|
hart.regs[1] = 6;
|
|
|
|
execute(&hart, 0x00c0c113); // xori x2, x1, 12
|
|
assert(hart.regs[2] == 10);
|
|
|
|
execute(&hart, 0x00c0e113); // ori x2, x1, 12
|
|
assert(hart.regs[2] == 14);
|
|
|
|
execute(&hart, 0x00c0f113); // andi x2, x1, 12
|
|
assert(hart.regs[2] == 4);
|
|
}
|
|
|
|
void test_slli_srli_srai()
|
|
{
|
|
struct Hart hart = {0};
|
|
|
|
hart.regs[1] = 6;
|
|
|
|
execute(&hart, 0x00209113); // slli x2, x1, 2
|
|
assert(hart.regs[2] == 24);
|
|
|
|
execute(&hart, 0x0020d113); // srli x2, x1, 2
|
|
assert(hart.regs[2] == 1);
|
|
|
|
execute(&hart, 0x4020d113); // srai x2, x1, 2
|
|
assert(hart.regs[2] == 1);
|
|
|
|
hart.regs[1] = (uint32_t)-6;
|
|
|
|
execute(&hart, 0x0020d113); // srli x2, x1, 2
|
|
assert(hart.regs[2] == 0x3FFFFFFE);
|
|
|
|
execute(&hart, 0x4020d113); // srai x2, x1, 2
|
|
assert(hart.regs[2] == 0xFFFFFFFE);
|
|
}
|
|
|
|
void test_lui_auipc()
|
|
{
|
|
struct Hart hart = {0};
|
|
|
|
hart.pc = 0;
|
|
execute(&hart, 0x0007b0b7); // lui x1, 503808
|
|
assert(hart.regs[1] == 503808);
|
|
|
|
hart.pc = 0;
|
|
execute(&hart, 0x0007b097); // auipc x1, 503808
|
|
assert(hart.regs[1] == 503808);
|
|
|
|
hart.pc = 12;
|
|
execute(&hart, 0x0007b097); // auipc x1, 503808
|
|
assert(hart.regs[1] == 503820);
|
|
}
|
|
|
|
void test_op()
|
|
{
|
|
struct Hart hart = {0};
|
|
|
|
hart.regs[1] = 3;
|
|
hart.regs[2] = 4;
|
|
hart.regs[4] = (uint32_t)-1;
|
|
|
|
execute(&hart, 0x002081b3); // add, x3, x1, x2
|
|
assert(hart.regs[3] == 7);
|
|
|
|
execute(&hart, 0x402081b3); // sub x3, x1, x2
|
|
assert(hart.regs[3] == 0xFFFFFFFF);
|
|
|
|
execute(&hart, 0x0020a1b3); // slt x3, x1, x2
|
|
assert(hart.regs[3] == 1);
|
|
|
|
execute(&hart, 0x001121b3); // slt x3, x2, 1
|
|
assert(hart.regs[3] == 0);
|
|
|
|
execute(&hart, 0x001131b3); // sltu x3, x2, x1
|
|
assert(hart.regs[3] == 0);
|
|
|
|
execute(&hart, 0x0020b1b3); // sltu x3, x1, x2
|
|
assert(hart.regs[3] == 1);
|
|
|
|
execute(&hart, 0x0040a1b3); // slt x3, x1, x4
|
|
assert(hart.regs[3] == 0);
|
|
|
|
hart.regs[1] = 6;
|
|
hart.regs[2] = 12;
|
|
|
|
execute(&hart, 0x0020e1b3); // or x3, x1, x2
|
|
assert(hart.regs[3] == 14);
|
|
|
|
execute(&hart, 0x0020c1b3); // xor x3, x1, x2
|
|
assert(hart.regs[3] == 10);
|
|
|
|
execute(&hart, 0x0020f1b3); // and x3, x1, x2
|
|
assert(hart.regs[3] == 4);
|
|
|
|
hart.regs[1] = 6;
|
|
hart.regs[2] = 2;
|
|
|
|
execute(&hart, 0x002091b3); // sll x3, x1, x2
|
|
assert(hart.regs[3] == 24);
|
|
|
|
execute(&hart, 0x0020d1b3); // srl x3, x1, x2
|
|
assert(hart.regs[3] == 1);
|
|
|
|
execute(&hart, 0x4020d1b3); // sra x3, x1, x2
|
|
assert(hart.regs[3] == 1);
|
|
|
|
hart.regs[1] = (uint32_t)-6;
|
|
hart.regs[2] = 2;
|
|
|
|
execute(&hart, 0x4020d1b3); // sra x3, x1, x2
|
|
assert(hart.regs[3] == 0xFFFFFFFE);
|
|
}
|
|
|
|
void test_jal()
|
|
{
|
|
struct Hart hart = {0};
|
|
|
|
hart.pc = 12;
|
|
|
|
execute(&hart, 0x12c000ef); // jal x1, 300
|
|
assert(hart.regs[1] == 16);
|
|
assert(hart.pc == 312);
|
|
|
|
execute(&hart, 0xed5ff0ef); // jal x1, -300
|
|
assert(hart.regs[1] == 316);
|
|
assert(hart.pc == 12);
|
|
}
|
|
|
|
void test_jalr()
|
|
{
|
|
struct Hart hart = {0};
|
|
|
|
hart.pc = 12;
|
|
hart.regs[1] = 300;
|
|
|
|
execute(&hart, 0x00a08167); // jalr x2, 10(x1)
|
|
assert(hart.regs[2] == 16);
|
|
assert(hart.pc == 310);
|
|
|
|
execute(&hart, 0xff608167); // jalr x2, -10(x1)
|
|
assert(hart.regs[2] == 314);
|
|
assert(hart.pc == 290);
|
|
}
|
|
|
|
void test_branch()
|
|
{
|
|
struct Hart hart = {0};
|
|
|
|
hart.pc = 100;
|
|
hart.regs[1] = 2;
|
|
hart.regs[2] = 0xFFFFFFFC;
|
|
|
|
execute(&hart, 0x00208c63); // beq x1, x2, 24
|
|
assert(hart.pc == 104);
|
|
|
|
hart.pc = 100;
|
|
execute(&hart, 0x00209c63); // bne x1, x2, 24
|
|
assert(hart.pc == 124);
|
|
|
|
hart.pc = 100;
|
|
execute(&hart, 0x0020cc63); // blt x1, x2, 24
|
|
assert(hart.pc == 124);
|
|
|
|
hart.pc = 100;
|
|
execute(&hart, 0x0020dc63); // bge x1, x2, 24
|
|
assert(hart.pc == 104);
|
|
|
|
hart.pc = 100;
|
|
execute(&hart, 0x0020ec63); // bltu x1, x2, 24
|
|
assert(hart.pc == 104);
|
|
|
|
hart.pc = 100;
|
|
execute(&hart, 0x0020fc63); // bgeu x1, x2, 24
|
|
assert(hart.pc == 124);
|
|
}
|
|
|
|
void test()
|
|
{
|
|
test_addi();
|
|
test_slti_sltiu();
|
|
test_andi_ori_xori();
|
|
test_slli_srli_srai();
|
|
test_lui_auipc();
|
|
test_op();
|
|
test_jal();
|
|
test_jalr();
|
|
test_branch();
|
|
}
|
|
|
|
int main(int argc, char* argv[])
|
|
{
|
|
test();
|
|
|
|
if (argc < 2)
|
|
{
|
|
printf("Usage: %s <input elf>\n", argv[0]);
|
|
return EXIT_FAILURE;
|
|
}
|
|
|
|
uint32_t mem_size = 16 * 1024 * 1024;
|
|
char* mem = (char*)malloc(mem_size);
|
|
uint32_t start_address = 0;
|
|
|
|
if (!load_elf(argv[1], mem, mem_size, &start_address))
|
|
{
|
|
printf("Error loading ELF into memory\n");
|
|
return EXIT_FAILURE;
|
|
}
|
|
|
|
struct Hart hart = {0};
|
|
hart.pc = start_address;
|
|
hart.mem = mem;
|
|
hart.mem_size = mem_size;
|
|
|
|
while (true)
|
|
{
|
|
uint32_t instruction = load_word(&hart, hart.pc);
|
|
execute(&hart, instruction);
|
|
}
|
|
|
|
return EXIT_SUCCESS;
|
|
}
|