summaryrefslogtreecommitdiff
path: root/emulator/hart.c
blob: cfca8376a55e150de11b08f0bdcb6105973cda91 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
#include "emulator/hart.h"

#include <stdio.h>
#include <inttypes.h>
#include <assert.h>
#include <stdbool.h>
#include <string.h>

static inline uint32_t sign_extend(uint32_t word, uint32_t size)
{
    const uint32_t mask = 1U << (size - 1);
    return (word ^ mask) - mask;
}

struct Instruction
{
    uint8_t  opcode;
    uint8_t  rs1;
    uint8_t  rs2;
    uint8_t  rd;
    uint8_t  funct3;
    uint8_t  funct7;
    uint32_t imm;
};
typedef struct Instruction Instruction;

static Instruction decode_r_type(uint32_t word)
{
    Instruction instruction = {0};
    instruction.opcode =  word        & 0x7F;
    instruction.rd     = (word >> 7)  & 0x1F;
    instruction.funct3 = (word >> 12) & 0x07;
    instruction.rs1    = (word >> 15) & 0x1F;
    instruction.rs2    = (word >> 20) & 0x1F;
    instruction.funct7 =  word >> 25;
    return instruction;
};

static Instruction decode_i_type(uint32_t word)
{
    Instruction instruction = {0};
    instruction.opcode =  word        & 0x7F;
    instruction.rd     = (word >> 7)  & 0x1F;
    instruction.funct3 = (word >> 12) & 0x07;
    instruction.rs1    = (word >> 15) & 0x1F;
    instruction.imm    = sign_extend(word >> 20, 12);
    return instruction;
};

static Instruction decode_s_type(uint32_t word)
{
    Instruction instruction = {0};
    instruction.opcode =  word        & 0x7F;
    instruction.funct3 = (word >> 12) & 0x07;
    instruction.rs1    = (word >> 15) & 0x1F;
    instruction.rs2    = (word >> 20) & 0x1F;
    instruction.imm    = sign_extend(((word >> 7) & 0x1F) | (word >> 25), 12);
    return instruction;
};

static Instruction decode_b_type(uint32_t word)
{
    Instruction instruction = decode_s_type(word);
    instruction.imm = ((instruction.imm << 11) & 0x800) | (instruction.imm & 0xfffff7ff);
    return instruction;
};

static Instruction decode_u_type(uint32_t word)
{
    Instruction instruction = {0};
    instruction.opcode =  word        & 0x7F;
    instruction.rd     = (word >> 7)  & 0x1F;
    instruction.imm    =  word        & 0xFFFFF000;
    return instruction;
};

static Instruction decode_j_type(uint32_t word)
{
    Instruction instruction = {0};
    instruction.opcode =  word        & 0x7F;
    instruction.rd     = (word >> 7)  & 0x1F;
    instruction.imm    = sign_extend(
        ((word & 0x80000000) >> 11) |
        ((word & 0x000FF000) >> 0)  |
        ((word & 0x00100000) >> 9)  |
        ((word & 0x7FE00000) >> 20), 21);
    return instruction;
}

static void execute_op_imm(Hart* hart, uint32_t instruction)
{
    const Instruction inst = decode_i_type(instruction);
    if (inst.rd == 0) return;
    
    switch (inst.funct3)
    {
        case 0: // ADDI
            hart->regs[inst.rd] = hart->regs[inst.rs1] + inst.imm;
            break;
        case 1: // SLLI
            hart->regs[inst.rd] = hart->regs[inst.rs1] << (inst.imm & 0x1F);
            break;
        case 2: // SLTI
            hart->regs[inst.rd] = (int32_t)hart->regs[inst.rs1] < (int32_t)inst.imm ? 1 : 0;
            break;
        case 3: // SLTIU
            hart->regs[inst.rd] = hart->regs[inst.rs1] < inst.imm ? 1 : 0;
            break;
        case 4: // XORI
            hart->regs[inst.rd] = hart->regs[inst.rs1] ^ inst.imm;
            break;
        case 5: // SRLI, SRAI
        {
            const uint32_t shamt = inst.imm & 0x1F;
            uint32_t res = hart->regs[inst.rs1] >> shamt;
            if ((inst.imm & 0x400) && shamt > 0) { res = sign_extend(res, 32 - shamt); }
            hart->regs[inst.rd] = res;
            break;
        }
        case 6: // ORI
            hart->regs[inst.rd] = hart->regs[inst.rs1] | inst.imm;
            break;
        case 7: // ANDI
            hart->regs[inst.rd] = hart->regs[inst.rs1] & inst.imm;
            break;
        default:
            assert(!"Unhandled OP-IMM");
    }
}

static void execute_op(Hart* hart, uint32_t instruction)
{
    const Instruction inst = decode_r_type(instruction);
    if (inst.rd == 0) return;
    
    switch (inst.funct3)
    {
        case 0: // ADD, SUB
            if (instruction & 0x40000000)
            {
                hart->regs[inst.rd] = hart->regs[inst.rs1] - hart->regs[inst.rs2];
            }
            else
            {
                hart->regs[inst.rd] = hart->regs[inst.rs1] + hart->regs[inst.rs2];
            }
            break;
        case 1: // SLL
            hart->regs[inst.rd] = hart->regs[inst.rs1] << (hart->regs[inst.rs2] & 0x1F);
            break;
        case 2: // SLT
            hart->regs[inst.rd] = (int32_t)hart->regs[inst.rs1] < (int32_t)hart->regs[inst.rs2] ? 1 : 0;
            break;
        case 3: // SLTU
            hart->regs[inst.rd] = hart->regs[inst.rs1] < hart->regs[inst.rs2] ? 1 : 0;
            break;
        case 4: // XOR
            hart->regs[inst.rd] = hart->regs[inst.rs1] ^ hart->regs[inst.rs2];
            break;
        case 5: // SRL, SRA
        {
            const uint32_t shamt = hart->regs[inst.rs2] & 0x1F;
            uint32_t res = hart->regs[inst.rs1] >> shamt;
            if ((instruction & 0x40000000) && shamt > 0) { res = sign_extend(res, 32 - shamt); }
            hart->regs[inst.rd] = res;
            break;
        }
        case 6: // OR
            hart->regs[inst.rd] = hart->regs[inst.rs1] | hart->regs[inst.rs2];
            break;
        case 7: // AND
            hart->regs[inst.rd] = hart->regs[inst.rs1] & hart->regs[inst.rs2];
            break;
        default:
            assert(!"Unhandled OP-IMM");
    }
}

static void execute_branch(Hart* hart, uint32_t instruction)
{
    const Instruction inst = decode_b_type(instruction);
    const uint32_t r1 = hart->regs[inst.rs1];
    const uint32_t r2 = hart->regs[inst.rs2];
    bool take_branch = false;

    switch (inst.funct3)
    {
        case 0: take_branch = (r1 == r2); break;
        case 1: take_branch = (r1 != r2); break;
        case 4: take_branch = (r1 < r2); break;
        case 5: take_branch = (r1 >= r2); break;
        case 6: take_branch = ((int32_t)r1 < (int32_t)r2); break;
        case 7: take_branch = ((int32_t)r1 >= (int32_t)r2); break;
    }

    if (take_branch)
    {
        hart->pc += inst.imm;
    }
    else
    {
        hart->pc += 4;
    }
}

static inline uint32_t load_size(Hart* hart, uint32_t address, uint32_t size)
{
    if ((address & 0x80000000) == 0)
    {
        assert(address + size < hart->mem_size);
        uint32_t value = 0;
        memcpy(&value, hart->mem + address, size);
        return value;
    }
    
    return 0;
}

static uint32_t load_byte(Hart* hart, uint32_t address)
{
    return load_size(hart, address, 1);
}

static uint32_t load_half(Hart* hart, uint32_t address)
{
    return load_size(hart, address, 2);
}

static uint32_t load_word(Hart* hart, uint32_t address)
{
    return load_size(hart, address, 4);
}

static inline void store_size(Hart* hart, uint32_t address, uint32_t value, uint32_t size)
{
    if ((address & 0x80000000) == 0)
    {
        assert(address + size < hart->mem_size);
        memcpy(hart->mem + address, &value, size);
    }
    else if (address == 0x80000000)
    {
        fwrite(&value, 1, size, stdout);
    }
}

static void store_byte(Hart* hart, uint32_t address, uint8_t value)
{
    store_size(hart, address, value, 1);
}

static void store_half(Hart* hart, uint32_t address, uint16_t value)
{
    store_size(hart, address, value, 2);
}

static void store_word(Hart* hart, uint32_t address, uint32_t value)
{
    store_size(hart, address, value, 4);
}

static void execute_op_load(Hart* hart, uint32_t instruction)
{
    const Instruction inst = decode_i_type(instruction);
    const uint32_t address = hart->regs[inst.rs1] + inst.imm;
    
    uint32_t value = 0;
    
    switch (inst.funct3 & 0x03)
    {
        case 0:
            value = load_byte(hart, address);
            if ((inst.funct3 & 0x40) == 0)
            {
                value = sign_extend(value, 8);
            }
            break;
        case 1:
            value = load_half(hart, address);
            if ((inst.funct3 & 0x40) == 0)
            {
                value = sign_extend(value, 16);
            }
            break;
        case 2:
            value = load_byte(hart, address);
            break;
        default:
            assert(!"Unhandled load size");
            break;
    }

    if (inst.rd != 0)
    {
        hart->regs[inst.rd] = value;
    }
}

static void execute_op_store(Hart* hart, uint32_t instruction)
{
    const Instruction inst = decode_s_type(instruction);
    const uint32_t address = hart->regs[inst.rs1] + inst.imm;
    const uint32_t value = hart->regs[inst.rs2];

    switch (inst.funct3 & 0x03)
    {
        case 0: store_byte(hart, address, value & 0xFF); break;
        case 1: store_half(hart, address, value & 0xFFFF); break;
        case 2: store_word(hart, address, value); break;
        default:
            assert(!"Unhandled store size");
            break;
    }
}

static void execute_misc_mem(Hart* hart, uint32_t instruction)
{
    const Instruction inst = decode_i_type(instruction);
    
    if (inst.funct3 == 0)
    {
        // FENCE
    }
    else
    {
        assert(!"Unhandled MISC-MEM instruction");
    }
}

static void execute_system(Hart* hart, uint32_t instruction)
{
    const Instruction inst = decode_i_type(instruction);
    
    if (inst.funct3 == 0 && inst.rs1 == 0 && inst.rd == 0)
    {
        if (inst.imm == 0)
        {
            // ECALL
        }
        else if (inst.imm == 1)
        {
            // EBREAK
        }
        else
        {
            assert(!"Unhandled SYSTEM/PRIV instruction");
        }
    }
    else
    {
        assert(!"Unhandled SYSTEM instruction");
    }
}

void execute(Hart* hart, uint32_t instruction)
{
    switch (instruction & 0x7f)
    {
        case 0x03:
            execute_op_load(hart, instruction);
            hart->pc += 4;
            break;
        case 0x0F:
            execute_misc_mem(hart, instruction);
            hart->pc += 4;
            break;
        case 0x13:
            execute_op_imm(hart, instruction);
            hart->pc += 4;
            break;
        case 0x17: // AUIPC
        {
            Instruction inst = decode_u_type(instruction);
            if (inst.rd != 0)
            {
                hart->regs[inst.rd] = inst.imm + hart->pc;
            }
            hart->pc += 4;
            break;
        }
        case 0x23:
            execute_op_store(hart, instruction);
            hart->pc += 4;
            break;
        case 0x33:
            execute_op(hart, instruction);
            hart->pc += 4;
            break;
        case 0x37: // LUI
        {
            Instruction inst = decode_u_type(instruction);
            if (inst.rd != 0)
            {
                hart->regs[inst.rd] = inst.imm;
            }
            hart->pc += 4;
            break;
        }
        case 0x63:
            execute_branch(hart, instruction);
            break;
        case 0x67: // JALR
        {
            Instruction inst = decode_i_type(instruction);
            assert(inst.funct3 == 0);
            if (inst.rd != 0)
            {
                hart->regs[inst.rd] = hart->pc + 4;
            }
            hart->pc = (hart->regs[inst.rs1] + inst.imm) & 0xFFFFFFFE;
            break;
        }
        case 0x6F: // JAL
        {
            Instruction inst = decode_j_type(instruction);
            if (inst.rd != 0)
            {
                hart->regs[inst.rd] = hart->pc + 4;
            }
            hart->pc += inst.imm;
            break;
        }
        case 0x73:
        {
            execute_system(hart, instruction);
            hart->pc += 4;
            break;
        }
        default:
            assert(!"Unhandled opcode");
    }

    assert(hart->regs[0] == 0);
}

void execute_from(Hart* hart, uint32_t start_address)
{
    hart->pc = start_address;

    while (true)
    {
        uint32_t instruction = load_word(hart, hart->pc);
        execute(hart, instruction);
    }
}