summaryrefslogtreecommitdiff
path: root/emulator/hart.c
blob: 297148b6cf2c5d8ae82b641188c17550c4cdde4a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
#include "emulator/hart.h"

#include <stdio.h>
#include <inttypes.h>
#include <assert.h>
#include <stdbool.h>
#include <string.h>

#define REG_ZERO 0 
#define REG_RA   1 
#define REG_SP   2 
#define REG_GP   3 
#define REG_TP   4 
#define REG_T0   5 
#define REG_T1   6 
#define REG_T2   7 
#define REG_S0   8 
#define REG_S1   9 
#define REG_A0   10 
#define REG_A1   11 
#define REG_A2   12 
#define REG_A3   13 
#define REG_A4   14 
#define REG_A5   15 
#define REG_A6   16 
#define REG_A7   17 
#define REG_S2   18 
#define REG_S3   19 
#define REG_S4   20 
#define REG_S5   21 
#define REG_S6   22 
#define REG_S7   23 
#define REG_S8   24 
#define REG_S9   25 
#define REG_S10  26 
#define REG_S11  27 
#define REG_T3   28 
#define REG_T4   29 
#define REG_T5   30 
#define REG_T6   31 

static inline uint32_t sign_extend(uint32_t word, uint32_t size)
{
    const uint32_t mask = 1U << (size - 1);
    return (word ^ mask) - mask;
}

static inline uint64_t sign_extend_64(uint64_t word, uint32_t size)
{
    const uint64_t mask = 1ULL << (size - 1);
    return (word ^ mask) - mask;
}

struct Instruction
{
    uint8_t  opcode;
    uint8_t  rs1;
    uint8_t  rs2;
    uint8_t  rd;
    uint8_t  funct3;
    uint8_t  funct7;
    uint32_t imm;
};
typedef struct Instruction Instruction;

static Instruction decode_r_type(uint32_t word)
{
    Instruction instruction = {0};
    instruction.opcode =  word        & 0x7F;
    instruction.rd     = (word >> 7)  & 0x1F;
    instruction.funct3 = (word >> 12) & 0x07;
    instruction.rs1    = (word >> 15) & 0x1F;
    instruction.rs2    = (word >> 20) & 0x1F;
    instruction.funct7 =  word >> 25;
    return instruction;
};

static Instruction decode_i_type(uint32_t word)
{
    Instruction instruction = {0};
    instruction.opcode =  word        & 0x7F;
    instruction.rd     = (word >> 7)  & 0x1F;
    instruction.funct3 = (word >> 12) & 0x07;
    instruction.rs1    = (word >> 15) & 0x1F;
    instruction.imm    = sign_extend(word >> 20, 12);
    return instruction;
};

static Instruction decode_s_type(uint32_t word)
{
    Instruction instruction = {0};
    instruction.opcode =  word        & 0x7F;
    instruction.funct3 = (word >> 12) & 0x07;
    instruction.rs1    = (word >> 15) & 0x1F;
    instruction.rs2    = (word >> 20) & 0x1F;
    instruction.imm    = sign_extend(((word >> 7) & 0x1F) | (word >> 25), 12);
    return instruction;
};

static Instruction decode_b_type(uint32_t word)
{
    Instruction instruction = decode_s_type(word);
    instruction.imm = ((instruction.imm << 11) & 0x800) | (instruction.imm & 0xfffff7ff);
    return instruction;
};

static Instruction decode_u_type(uint32_t word)
{
    Instruction instruction = {0};
    instruction.opcode =  word        & 0x7F;
    instruction.rd     = (word >> 7)  & 0x1F;
    instruction.imm    =  word        & 0xFFFFF000;
    return instruction;
};

static Instruction decode_j_type(uint32_t word)
{
    Instruction instruction = {0};
    instruction.opcode =  word        & 0x7F;
    instruction.rd     = (word >> 7)  & 0x1F;
    instruction.imm    = sign_extend(
        ((word & 0x80000000) >> 11) |
        ((word & 0x000FF000) >> 0)  |
        ((word & 0x00100000) >> 9)  |
        ((word & 0x7FE00000) >> 20), 21);
    return instruction;
}

static void execute_op_imm(Hart* hart, uint32_t instruction)
{
    const Instruction inst = decode_i_type(instruction);
    if (inst.rd == 0) return;
    
    switch (inst.funct3)
    {
        case 0: // ADDI
            hart->regs[inst.rd] = hart->regs[inst.rs1] + inst.imm;
            break;
        case 1: // SLLI
            hart->regs[inst.rd] = hart->regs[inst.rs1] << (inst.imm & 0x1F);
            break;
        case 2: // SLTI
            hart->regs[inst.rd] = (int32_t)hart->regs[inst.rs1] < (int32_t)inst.imm ? 1 : 0;
            break;
        case 3: // SLTIU
            hart->regs[inst.rd] = hart->regs[inst.rs1] < inst.imm ? 1 : 0;
            break;
        case 4: // XORI
            hart->regs[inst.rd] = hart->regs[inst.rs1] ^ inst.imm;
            break;
        case 5: // SRLI, SRAI
        {
            const uint32_t shamt = inst.imm & 0x1F;
            uint32_t res = hart->regs[inst.rs1] >> shamt;
            if ((inst.imm & 0x400) && shamt > 0) { res = sign_extend(res, 32 - shamt); }
            hart->regs[inst.rd] = res;
            break;
        }
        case 6: // ORI
            hart->regs[inst.rd] = hart->regs[inst.rs1] | inst.imm;
            break;
        case 7: // ANDI
            hart->regs[inst.rd] = hart->regs[inst.rs1] & inst.imm;
            break;
        default:
            assert(!"Unhandled OP-IMM");
    }
}

static void execute_op(Hart* hart, uint32_t instruction)
{
    const Instruction inst = decode_r_type(instruction);
    if (inst.rd == 0) return;

    uint32_t bank = inst.funct7 & 0x5F;
    if (bank == 0)
    {
        switch (inst.funct3)
        {
            case 0: // ADD, SUB
                if (inst.funct7 & 0x20)
                {
                    hart->regs[inst.rd] = hart->regs[inst.rs1] - hart->regs[inst.rs2];
                }
                else
                {
                    hart->regs[inst.rd] = hart->regs[inst.rs1] + hart->regs[inst.rs2];
                }
                break;
            case 1: // SLL
                hart->regs[inst.rd] = hart->regs[inst.rs1] << (hart->regs[inst.rs2] & 0x1F);
                break;
            case 2: // SLT
                hart->regs[inst.rd] = (int32_t)hart->regs[inst.rs1] < (int32_t)hart->regs[inst.rs2] ? 1 : 0;
                break;
            case 3: // SLTU
                hart->regs[inst.rd] = hart->regs[inst.rs1] < hart->regs[inst.rs2] ? 1 : 0;
                break;
            case 4: // XOR
                hart->regs[inst.rd] = hart->regs[inst.rs1] ^ hart->regs[inst.rs2];
                break;
            case 5: // SRL, SRA
            {
                const uint32_t shamt = hart->regs[inst.rs2] & 0x1F;
                uint32_t res = hart->regs[inst.rs1] >> shamt;
                if ((inst.funct7 & 0x20) && shamt > 0) { res = sign_extend(res, 32 - shamt); }
                hart->regs[inst.rd] = res;
                break;
            }
            case 6: // OR
                hart->regs[inst.rd] = hart->regs[inst.rs1] | hart->regs[inst.rs2];
                break;
            case 7: // AND
                hart->regs[inst.rd] = hart->regs[inst.rs1] & hart->regs[inst.rs2];
                break;
            default:
                assert(!"Unhandled OP, bank = 0");
                break;
        }
    }
    else if (bank == 1)
    {
        if ((inst.funct3 & 0x4) == 0)
        {
            uint64_t a = hart->regs[inst.rs1];
            uint64_t b = hart->regs[inst.rs2];

            switch (inst.funct3 & 0x3)
            {
                case 1: // MULH
                    b = sign_extend_64(b, 32);
                case 2: // MULHSU
                    a = sign_extend_64(a, 32);
                case 0: // MUL
                case 3: // MULHU
                    break;
            }

            uint64_t r = a * b;
            hart->regs[inst.rd] = (inst.funct3 == 0) ? r & 0xFFFFFFFF : r >> 32;
        }
        else
        {
            uint32_t a = hart->regs[inst.rs1];
            uint32_t b = hart->regs[inst.rs2];

            switch (inst.funct3 & 0x3)
            {
                case 0: // DIV
                {
                    if (b == 0)
                    {
                        hart->regs[inst.rd] = 0xFFFFFFFF;
                    }
                    else if (a == 0x80000000 && b == 0xFFFFFFFF)
                    {
                        hart->regs[inst.rd] = 0x80000000;
                    }
                    else
                    {
                        hart->regs[inst.rd] = (uint32_t)((int32_t)a / (int32_t)b);
                    }
                    break;
                }
                case 1: // DIVU
                {
                    if (b == 0)
                    {
                        hart->regs[inst.rd] = 0xFFFFFFFF;
                    }
                    else
                    {
                        hart->regs[inst.rd] = a / b;
                    }
                    break;
                }
                case 2: // REM
                {
                    if (b == 0)
                    {
                        hart->regs[inst.rd] = a;
                    }
                    else if (a == 0x80000000 && b == 0xFFFFFFFF)
                    {
                        hart->regs[inst.rd] = 0;
                    }
                    else
                    {
                        hart->regs[inst.rd] = (uint32_t)((int32_t)a % (int32_t)b);
                    }
                    break;
                }
                case 3: // REMU
                {
                    if (b == 0)
                    {
                        hart->regs[inst.rd] = a;
                    }
                    else
                    {
                        hart->regs[inst.rd] = a % b;
                    }
                    break;
                }
            }
        }
    }
    else
    {
        assert(!"Unhandled OP bank");
    }
}

static void execute_branch(Hart* hart, uint32_t instruction)
{
    const Instruction inst = decode_b_type(instruction);
    const uint32_t r1 = hart->regs[inst.rs1];
    const uint32_t r2 = hart->regs[inst.rs2];
    bool take_branch = false;

    switch (inst.funct3)
    {
        case 0: take_branch = (r1 == r2); break;
        case 1: take_branch = (r1 != r2); break;
        case 4: take_branch = (r1 < r2); break;
        case 5: take_branch = (r1 >= r2); break;
        case 6: take_branch = ((int32_t)r1 < (int32_t)r2); break;
        case 7: take_branch = ((int32_t)r1 >= (int32_t)r2); break;
    }

    if (take_branch)
    {
        hart->pc += inst.imm;
    }
    else
    {
        hart->pc += 4;
    }
}

static inline uint32_t load_size(Hart* hart, uint32_t address, uint32_t size)
{
    if ((address & 0x80000000) == 0)
    {
        assert(address + size < hart->mem_size);
        uint32_t value = 0;
        memcpy(&value, hart->mem + address, size);
        return value;
    }
    
    return 0;
}

static uint32_t load_byte(Hart* hart, uint32_t address)
{
    return load_size(hart, address, 1);
}

static uint32_t load_half(Hart* hart, uint32_t address)
{
    return load_size(hart, address, 2);
}

static uint32_t load_word(Hart* hart, uint32_t address)
{
    return load_size(hart, address, 4);
}

static inline void store_size(Hart* hart, uint32_t address, uint32_t value, uint32_t size)
{
    if ((address & 0x80000000) == 0)
    {
        assert(address + size < hart->mem_size);
        memcpy(hart->mem + address, &value, size);
    }
    else if (address == 0x80000000)
    {
        fwrite(&value, 1, size, stdout);
    }
}

static void store_byte(Hart* hart, uint32_t address, uint8_t value)
{
    store_size(hart, address, value, 1);
}

static void store_half(Hart* hart, uint32_t address, uint16_t value)
{
    store_size(hart, address, value, 2);
}

static void store_word(Hart* hart, uint32_t address, uint32_t value)
{
    store_size(hart, address, value, 4);
}

static void execute_load(Hart* hart, uint32_t instruction)
{
    const Instruction inst = decode_i_type(instruction);
    const uint32_t address = hart->regs[inst.rs1] + inst.imm;
    
    uint32_t value = 0;
    
    switch (inst.funct3 & 0x03)
    {
        case 0:
            value = load_byte(hart, address);
            if ((inst.funct3 & 0x40) == 0)
            {
                value = sign_extend(value, 8);
            }
            break;
        case 1:
            value = load_half(hart, address);
            if ((inst.funct3 & 0x40) == 0)
            {
                value = sign_extend(value, 16);
            }
            break;
        case 2:
            value = load_byte(hart, address);
            break;
        default:
            assert(!"Unhandled load size");
            break;
    }

    if (inst.rd != 0)
    {
        hart->regs[inst.rd] = value;
    }
}

static void execute_store(Hart* hart, uint32_t instruction)
{
    const Instruction inst = decode_s_type(instruction);
    const uint32_t address = hart->regs[inst.rs1] + inst.imm;
    const uint32_t value = hart->regs[inst.rs2];

    switch (inst.funct3 & 0x03)
    {
        case 0: store_byte(hart, address, value & 0xFF); break;
        case 1: store_half(hart, address, value & 0xFFFF); break;
        case 2: store_word(hart, address, value); break;
        default:
            assert(!"Unhandled store size");
            break;
    }
}

static void execute_misc_mem(Hart* hart, uint32_t instruction)
{
    const Instruction inst = decode_i_type(instruction);
    
    if (inst.funct3 == 0)
    {
        // FENCE
    }
    else
    {
        assert(!"Unhandled MISC-MEM instruction");
    }
}

static void handle_ecall(Hart* hart)
{
    if (hart->regs[REG_A0] == 0)
    {
        hart->halted = true;
    }
}

static uint32_t crs_read(Hart* hart, uint16_t id)
{
    // @Todo
    return 0;
}

static void crs_write(Hart* hart, uint16_t id, uint32_t new_value)
{
    // @Todo
}

static uint32_t crs_read_write(Hart* hart, uint16_t id, uint32_t new_value)
{
    // @Todo
    return 0;
}

static uint32_t crs_read_clear(Hart* hart, uint16_t id, uint32_t mask)
{
    // @Todo
    return 0;
}

static uint32_t crs_read_set(Hart* hart, uint16_t id, uint32_t mask)
{
    // @Todo
    return 0;
}

static void execute_system(Hart* hart, uint32_t instruction)
{
    const Instruction inst = decode_i_type(instruction);

    switch (inst.funct3)
    {
        case 0:
        {
            if (inst.rs1 == 0 && inst.rd == 0)
            {
                if (inst.imm == 0)
                {
                    handle_ecall(hart);
                }
                else if (inst.imm == 1)
                {
                    // EBREAK
                }
                else
                {
                    assert(!"Unhandled SYSTEM/PRIV instruction");
                }
            }
            else
            {
                assert(!"Unhandled SYSTEM/PRIV instruction");
            }
            break;
        }
        case 1: // CRSRW
        {
            uint16_t crs_id = inst.imm & 0xFFF;
            
            if (inst.rd == 0)
            {
                crs_write(hart, crs_id, hart->regs[inst.rs1]);
            }
            else
            {
                hart->regs[inst.rd] = crs_read_write(hart, crs_id, hart->regs[inst.rs1]);
            }
            break;
        }
        case 2: // CRSRS
        {
            uint16_t crs_id = inst.imm & 0xFFF;
            uint32_t value = 0;
            
            if (inst.rs1 == 0)
            {
                value = crs_read(hart, crs_id);
            }
            else
            {
                value = crs_read_set(hart, crs_id, hart->regs[inst.rs1]);
            }
            
            if (inst.rd != 0)
            {
                hart->regs[inst.rd] = value;
            }
            break;
        }
        case 3: // CRSRC
        {
            uint16_t crs_id = inst.imm & 0xFFF;
            uint32_t value = 0;
            
            if (inst.rs1 == 0)
            {
                value = crs_read(hart, crs_id);
            }
            else
            {
                value = crs_read_clear(hart, crs_id, hart->regs[inst.rs1]);
            }
            
            if (inst.rd != 0)
            {
                hart->regs[inst.rd] = value;
            }
            break;
        }
        case 5: // CRSRWI
        {
            uint16_t crs_id = inst.imm & 0xFFF;
            
            if (inst.rd == 0)
            {
                crs_write(hart, crs_id, inst.rs1);
            }
            else
            {
                hart->regs[inst.rd] = crs_read_write(hart, crs_id, inst.rs1);
            }
            break;
        }
        case 6: // CRSRSI
        {
            uint16_t crs_id = inst.imm & 0xFFF;
            uint32_t value = 0;
            
            if (inst.rs1 == 0)
            {
                value = crs_read(hart, crs_id);
            }
            else
            {
                value = crs_read_set(hart, crs_id, inst.rs1);
            }
            
            if (inst.rd != 0)
            {
                hart->regs[inst.rd] = value;
            }
            break;
        }
        case 7: // CRSRCI
        {
            uint16_t crs_id = inst.imm & 0xFFF;
            uint32_t value = 0;
            
            if (inst.rs1 == 0)
            {
                value = crs_read(hart, crs_id);
            }
            else
            {
                value = crs_read_clear(hart, crs_id, inst.rs1);
            }
            
            if (inst.rd != 0)
            {
                hart->regs[inst.rd] = value;
            }
            break;
        }
        default:
            assert(!"Unhandled SYSTEM instruction");
            break;
    }
}

void execute(Hart* hart, uint32_t instruction)
{
    switch (instruction & 0x7f)
    {
        case 0x03:
            execute_load(hart, instruction);
            hart->pc += 4;
            break;
        case 0x0F:
            execute_misc_mem(hart, instruction);
            hart->pc += 4;
            break;
        case 0x13:
            execute_op_imm(hart, instruction);
            hart->pc += 4;
            break;
        case 0x17: // AUIPC
        {
            Instruction inst = decode_u_type(instruction);
            if (inst.rd != 0)
            {
                hart->regs[inst.rd] = inst.imm + hart->pc;
            }
            hart->pc += 4;
            break;
        }
        case 0x23:
            execute_store(hart, instruction);
            hart->pc += 4;
            break;
        case 0x33:
            execute_op(hart, instruction);
            hart->pc += 4;
            break;
        case 0x37: // LUI
        {
            Instruction inst = decode_u_type(instruction);
            if (inst.rd != 0)
            {
                hart->regs[inst.rd] = inst.imm;
            }
            hart->pc += 4;
            break;
        }
        case 0x63:
            execute_branch(hart, instruction);
            break;
        case 0x67: // JALR
        {
            Instruction inst = decode_i_type(instruction);
            assert(inst.funct3 == 0);
            if (inst.rd != 0)
            {
                hart->regs[inst.rd] = hart->pc + 4;
            }
            hart->pc = (hart->regs[inst.rs1] + inst.imm) & 0xFFFFFFFE;
            break;
        }
        case 0x6F: // JAL
        {
            Instruction inst = decode_j_type(instruction);
            if (inst.rd != 0)
            {
                hart->regs[inst.rd] = hart->pc + 4;
            }
            hart->pc += inst.imm;
            break;
        }
        case 0x73:
        {
            execute_system(hart, instruction);
            hart->pc += 4;
            break;
        }
        default:
            assert(!"Unhandled opcode");
    }

    assert(hart->regs[0] == 0);
}

void execute_from(Hart* hart, uint32_t start_address)
{
    hart->pc = start_address;
    hart->halted = false;

    while (!hart->halted)
    {
        uint32_t instruction = load_word(hart, hart->pc);
        execute(hart, instruction);
    }
}