summaryrefslogtreecommitdiff
path: root/emulator/main.c
blob: ed875a3988a0d2f46db3e66e111688bd24461297 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
#include <stdio.h>
#include <stdlib.h>
#include <inttypes.h>
#include <assert.h>
#include <stdbool.h>
#include <string.h>

#define ET_NONE 0x00
#define ET_REL  0x01
#define ET_EXEC 0x02
#define ET_DYN  0x03
#define ET_CORE 0x04

struct Elf32Header
{
    uint8_t  ident[16];
    uint16_t type;
    uint16_t machine;
    uint32_t version;
    uint32_t entry;
    uint32_t phoff;
    uint32_t shoff;
    uint32_t flags;
    uint16_t ehsize;
    uint16_t phentsize;
    uint16_t phnum;
    uint16_t shentsize;
    uint16_t shnum;
    uint16_t shstrndx;
};

#define PT_NULL    0x00000000
#define PT_LOAD    0x00000001
#define PT_DYNAMIC 0x00000002
#define PT_INTERP  0x00000003
#define PT_NOTE    0x00000004
#define PT_SHLIB   0x00000005
#define PT_PHDR    0x00000006
#define PT_TLS     0x00000007

#define PF_X 0x1
#define PF_W 0x2
#define PF_R 0x4

struct Elf32ProgramHeader
{
    uint32_t type;
    uint32_t offset;
    uint32_t vaddr;
    uint32_t paddr;
    uint32_t filesz;
    uint32_t memsz;
    uint32_t flags;
    uint32_t align;
};

bool load_elf(const char* file, char* mem, uint32_t mem_size, uint32_t* start_address)
{
    FILE* fp = fopen(file, "rb");
    if (fp == NULL)
    {
        printf("Couldn't open input file\n");
        return false;
    }

    struct Elf32Header header;
    size_t read = fread(&header, sizeof(struct Elf32Header), 1, fp);
    if (read != 1)
    {
        printf("ELF header too small\n");
        return false;
    }

    static uint8_t kValidIdent[7] = {
        0x7f, 0x45, 0x4c, 0x46,
        1, 1, 1
    };
    if (memcmp(kValidIdent, header.ident, 7) != 0)
    {
        printf("Invalid ELF header\n");
        return false;
    }

    if (header.type != ET_EXEC)
    {
        printf("Can only link EXEC ELF files\n");
        return false;
    }

    memset(mem, 0, mem_size);
    
    assert(header.phnum == 0 || header.phentsize == sizeof(struct Elf32ProgramHeader));
    for (uint32_t i = 0; i < header.phnum; ++i)
    {
        struct Elf32ProgramHeader pheader;

        fseek(fp, header.phoff + i * header.phentsize, SEEK_SET);
        read = fread(&pheader, sizeof(struct Elf32ProgramHeader), 1, fp);
        if (read != 1)
        {
            printf("Error reading program header at index %u\n", i);
            return false;
        }

        if (pheader.type == PT_LOAD)
        {
            if (pheader.paddr + pheader.memsz > mem_size)
            {
                printf("Memory not large enough for ELF file\n");
                return false;
            }

            fseek(fp, pheader.offset, SEEK_SET);
            read = fread(mem + pheader.paddr, pheader.filesz, 1, fp);
            if (read != 1)
            {
                printf("Error when copying ELF segment\n");
                return false;
            }
        }
    }

    if (header.entry > mem_size)
    {
        printf("Entry address out of bounds\n");
        return false;
    }

    *start_address = header.entry;
    fclose(fp);

    return true;
}

inline uint32_t sign_extend(uint32_t word, uint32_t size)
{
    const uint32_t mask = 1U << (size - 1);
    return (word ^ mask) - mask;
}

struct Instruction
{
    uint8_t  opcode;
    uint8_t  rs1;
    uint8_t  rs2;
    uint8_t  rd;
    uint8_t  funct3;
    uint8_t  funct7;
    uint32_t imm;
};

struct Instruction decode_r_type(uint32_t word)
{
    struct Instruction instruction = {0};
    instruction.opcode =  word        & 0x7F;
    instruction.rd     = (word >> 7)  & 0x1F;
    instruction.funct3 = (word >> 12) & 0x07;
    instruction.rs1    = (word >> 15) & 0x1F;
    instruction.rs2    = (word >> 20) & 0x1F;
    instruction.funct7 =  word >> 25;
    return instruction;
};

struct Instruction decode_i_type(uint32_t word)
{
    struct Instruction instruction = {0};
    instruction.opcode =  word        & 0x7F;
    instruction.rd     = (word >> 7)  & 0x1F;
    instruction.funct3 = (word >> 12) & 0x07;
    instruction.rs1    = (word >> 15) & 0x1F;
    instruction.imm    = sign_extend(word >> 20, 12);
    return instruction;
};

struct Instruction decode_s_type(uint32_t word)
{
    struct Instruction instruction = {0};
    instruction.opcode =  word        & 0x7F;
    instruction.funct3 = (word >> 12) & 0x07;
    instruction.rs1    = (word >> 15) & 0x1F;
    instruction.rs2    = (word >> 20) & 0x1F;
    instruction.imm    = sign_extend(((word >> 7) & 0x1F) | (word >> 25), 12);
    return instruction;
};

struct Instruction decode_b_type(uint32_t word)
{
    struct Instruction instruction = decode_s_type(word);
    instruction.imm = ((instruction.imm << 11) & 0x800) | (instruction.imm & 0xfffff7ff);
    return instruction;
};

struct Instruction decode_u_type(uint32_t word)
{
    struct Instruction instruction = {0};
    instruction.opcode =  word        & 0x7F;
    instruction.rd     = (word >> 7)  & 0x1F;
    instruction.imm    =  word        & 0xFFFFF000;
    return instruction;
};

struct Instruction decode_j_type(uint32_t word)
{
    struct Instruction instruction = {0};
    instruction.opcode =  word        & 0x7F;
    instruction.rd     = (word >> 7)  & 0x1F;
    instruction.imm    = sign_extend(
        ((word & 0x80000000) >> 11) |
        ((word & 0x000FF000) >> 0)  |
        ((word & 0x00100000) >> 9)  |
        ((word & 0x7FE00000) >> 20), 21);
    return instruction;
}

struct Hart
{
    uint32_t pc;
    uint32_t regs[32];
    char*    mem;
    uint32_t mem_size;
};

void execute_op_imm(struct Hart* hart, uint32_t instruction)
{
    const struct Instruction inst = decode_i_type(instruction);
    if (inst.rd == 0) return;
    
    switch (inst.funct3)
    {
        case 0: // ADDI
            hart->regs[inst.rd] = hart->regs[inst.rs1] + inst.imm;
            break;
        case 1: // SLLI
            hart->regs[inst.rd] = hart->regs[inst.rs1] << (inst.imm & 0x1F);
            break;
        case 2: // SLTI
            hart->regs[inst.rd] = (int32_t)hart->regs[inst.rs1] < (int32_t)inst.imm ? 1 : 0;
            break;
        case 3: // SLTIU
            hart->regs[inst.rd] = hart->regs[inst.rs1] < inst.imm ? 1 : 0;
            break;
        case 4: // XORI
            hart->regs[inst.rd] = hart->regs[inst.rs1] ^ inst.imm;
            break;
        case 5: // SRLI, SRAI
        {
            const uint32_t shamt = inst.imm & 0x1F;
            uint32_t res = hart->regs[inst.rs1] >> shamt;
            if ((inst.imm & 0x400) && shamt > 0) { res = sign_extend(res, 32 - shamt); }
            hart->regs[inst.rd] = res;
            break;
        }
        case 6: // ORI
            hart->regs[inst.rd] = hart->regs[inst.rs1] | inst.imm;
            break;
        case 7: // ANDI
            hart->regs[inst.rd] = hart->regs[inst.rs1] & inst.imm;
            break;
        default:
            assert(!"Unhandled OP-IMM");
    }
}

void execute_op(struct Hart* hart, uint32_t instruction)
{
    const struct Instruction inst = decode_r_type(instruction);
    if (inst.rd == 0) return;
    
    switch (inst.funct3)
    {
        case 0: // ADD, SUB
            if (instruction & 0x40000000)
            {
                hart->regs[inst.rd] = hart->regs[inst.rs1] - hart->regs[inst.rs2];
            }
            else
            {
                hart->regs[inst.rd] = hart->regs[inst.rs1] + hart->regs[inst.rs2];
            }
            break;
        case 1: // SLL
            hart->regs[inst.rd] = hart->regs[inst.rs1] << (hart->regs[inst.rs2] & 0x1F);
            break;
        case 2: // SLT
            hart->regs[inst.rd] = (int32_t)hart->regs[inst.rs1] < (int32_t)hart->regs[inst.rs2] ? 1 : 0;
            break;
        case 3: // SLTU
            hart->regs[inst.rd] = hart->regs[inst.rs1] < hart->regs[inst.rs2] ? 1 : 0;
            break;
        case 4: // XOR
            hart->regs[inst.rd] = hart->regs[inst.rs1] ^ hart->regs[inst.rs2];
            break;
        case 5: // SRL, SRA
        {
            const uint32_t shamt = hart->regs[inst.rs2] & 0x1F;
            uint32_t res = hart->regs[inst.rs1] >> shamt;
            if ((instruction & 0x40000000) && shamt > 0) { res = sign_extend(res, 32 - shamt); }
            hart->regs[inst.rd] = res;
            break;
        }
        case 6: // OR
            hart->regs[inst.rd] = hart->regs[inst.rs1] | hart->regs[inst.rs2];
            break;
        case 7: // AND
            hart->regs[inst.rd] = hart->regs[inst.rs1] & hart->regs[inst.rs2];
            break;
        default:
            assert(!"Unhandled OP-IMM");
    }
}

void execute_branch(struct Hart* hart, uint32_t instruction)
{
    const struct Instruction inst = decode_b_type(instruction);
    const uint32_t r1 = hart->regs[inst.rs1];
    const uint32_t r2 = hart->regs[inst.rs2];
    bool take_branch = false;

    switch (inst.funct3)
    {
        case 0: take_branch = (r1 == r2); break;
        case 1: take_branch = (r1 != r2); break;
        case 4: take_branch = (r1 < r2); break;
        case 5: take_branch = (r1 >= r2); break;
        case 6: take_branch = ((int32_t)r1 < (int32_t)r2); break;
        case 7: take_branch = ((int32_t)r1 >= (int32_t)r2); break;
    }

    if (take_branch)
    {
        hart->pc += inst.imm;
    }
    else
    {
        hart->pc += 4;
    }
}

inline uint32_t load_size(struct Hart* hart, uint32_t address, uint32_t size)
{
    if ((address & 0x80000000) == 0)
    {
        assert(address + size < hart->mem_size);
        uint32_t value = 0;
        memcpy(&value, hart->mem + address, size);
        return value;
    }
    
    return 0;
}

uint32_t load_byte(struct Hart* hart, uint32_t address)
{
    return load_size(hart, address, 1);
}

uint32_t load_half(struct Hart* hart, uint32_t address)
{
    return load_size(hart, address, 2);
}

uint32_t load_word(struct Hart* hart, uint32_t address)
{
    return load_size(hart, address, 4);
}

inline void store_size(struct Hart* hart, uint32_t address, uint32_t value, uint32_t size)
{
    if ((address & 0x80000000) == 0)
    {
        assert(address + size < hart->mem_size);
        memcpy(hart->mem + address, &value, size);
    }
    else if (address == 0x80000000)
    {
        fwrite(&value, 1, size, stdout);
    }
}

void store_byte(struct Hart* hart, uint32_t address, uint8_t value)
{
    store_size(hart, address, value, 1);
}

void store_half(struct Hart* hart, uint32_t address, uint16_t value)
{
    store_size(hart, address, value, 2);
}

void store_word(struct Hart* hart, uint32_t address, uint32_t value)
{
    store_size(hart, address, value, 4);
}

void execute_op_load(struct Hart* hart, uint32_t instruction)
{
    const struct Instruction inst = decode_i_type(instruction);
    const uint32_t address = hart->regs[inst.rs1] + inst.imm;
    
    uint32_t value = 0;
    
    switch (inst.funct3 & 0x03)
    {
        case 0:
            value = load_byte(hart, address);
            if ((inst.funct3 & 0x40) == 0)
            {
                value = sign_extend(value, 8);
            }
            break;
        case 1:
            value = load_half(hart, address);
            if ((inst.funct3 & 0x40) == 0)
            {
                value = sign_extend(value, 16);
            }
            break;
        case 2:
            value = load_byte(hart, address);
            break;
        default:
            assert(!"Unhandled load size");
            break;
    }

    if (inst.rd != 0)
    {
        hart->regs[inst.rd] = value;
    }
}

void execute_op_store(struct Hart* hart, uint32_t instruction)
{
    const struct Instruction inst = decode_s_type(instruction);
    const uint32_t address = hart->regs[inst.rs1] + inst.imm;
    const uint32_t value = hart->regs[inst.rs2];

    switch (inst.funct3 & 0x03)
    {
        case 0: store_byte(hart, address, value & 0xFF); break;
        case 1: store_half(hart, address, value & 0xFFFF); break;
        case 2: store_word(hart, address, value); break;
        default:
            assert(!"Unhandled store size");
            break;
    }
}

void execute_misc_mem(struct Hart* hart, uint32_t instruction)
{
    const struct Instruction inst = decode_i_type(instruction);
    
    if (inst.funct3 == 0)
    {
        // FENCE
    }
    else
    {
        assert(!"Unhandled MISC-MEM instruction");
    }
}

void execute_system(struct Hart* hart, uint32_t instruction)
{
    const struct Instruction inst = decode_i_type(instruction);
    
    if (inst.funct3 == 0 && inst.rs1 == 0 && inst.rd == 0)
    {
        if (inst.imm == 0)
        {
            // ECALL
        }
        else if (inst.imm == 1)
        {
            // EBREAK
        }
        else
        {
            assert(!"Unhandled SYSTEM/PRIV instruction");
        }
    }
    else
    {
        assert(!"Unhandled SYSTEM instruction");
    }
}

void execute(struct Hart* hart, uint32_t instruction)
{
    switch (instruction & 0x7f)
    {
        case 0x03:
            execute_op_load(hart, instruction);
            hart->pc += 4;
            break;
        case 0x0F:
            execute_misc_mem(hart, instruction);
            hart->pc += 4;
            break;
        case 0x13:
            execute_op_imm(hart, instruction);
            hart->pc += 4;
            break;
        case 0x17: // AUIPC
        {
            struct Instruction inst = decode_u_type(instruction);
            if (inst.rd != 0)
            {
                hart->regs[inst.rd] = inst.imm + hart->pc;
            }
            hart->pc += 4;
            break;
        }
        case 0x23:
            execute_op_store(hart, instruction);
            hart->pc += 4;
            break;
        case 0x33:
            execute_op(hart, instruction);
            hart->pc += 4;
            break;
        case 0x37: // LUI
        {
            struct Instruction inst = decode_u_type(instruction);
            if (inst.rd != 0)
            {
                hart->regs[inst.rd] = inst.imm;
            }
            hart->pc += 4;
            break;
        }
        case 0x63:
            execute_branch(hart, instruction);
            break;
        case 0x67: // JALR
        {
            struct Instruction inst = decode_i_type(instruction);
            assert(inst.funct3 == 0);
            if (inst.rd != 0)
            {
                hart->regs[inst.rd] = hart->pc + 4;
            }
            hart->pc = (hart->regs[inst.rs1] + inst.imm) & 0xFFFFFFFE;
            break;
        }
        case 0x6F: // JAL
        {
            struct Instruction inst = decode_j_type(instruction);
            if (inst.rd != 0)
            {
                hart->regs[inst.rd] = hart->pc + 4;
            }
            hart->pc += inst.imm;
            break;
        }
        case 0x73:
        {
            execute_system(hart, instruction);
            hart->pc += 4;
            break;
        }
        default:
            assert(!"Unhandled opcode");
    }

    assert(hart->regs[0] == 0);
}

void test_addi()
{
    struct Hart hart = {0};
    
    execute(&hart, 0x00500093); // addi x1, x0, 5
    assert(hart.regs[1] == 5);

    execute(&hart, 0xffe00093); // addi, x1, x0, -2
    assert(hart.regs[1] == 0xfffffffe);
}

void test_slti_sltiu()
{
    struct Hart hart = {0};
    
    hart.regs[1] = 5;

    execute(&hart, 0x00f0b113); // sltiu x2, x1, 15
    assert(hart.regs[2] == 1);

    execute(&hart, 0x0050b113); // sltiu x2, x1, 15
    assert(hart.regs[2] == 0);

    execute(&hart, 0x0010b113); // sltiu x2, x1, 15
    assert(hart.regs[2] == 0);

    execute(&hart, 0x00f0a113); // slti x2, x1, 15
    assert(hart.regs[2] == 1);

    execute(&hart, 0x0050a113); // slti x2, x1, 15
    assert(hart.regs[2] == 0);

    execute(&hart, 0x0010a113); // slti x2, x1, 15
    assert(hart.regs[2] == 0);

    execute(&hart, 0xffb0a113); // slti x2, x1, -5
    assert(hart.regs[2] == 0);

    hart.regs[1] = (uint32_t)-20;

    execute(&hart, 0xffb0a113); // slti x2, x1, -5
    assert(hart.regs[2] == 1);
}

void test_andi_ori_xori()
{
    struct Hart hart = {0};
    
    hart.regs[1] = 6;

    execute(&hart, 0x00c0c113); // xori x2, x1, 12
    assert(hart.regs[2] == 10);
    
    execute(&hart, 0x00c0e113); // ori x2, x1, 12
    assert(hart.regs[2] == 14);
    
    execute(&hart, 0x00c0f113); // andi x2, x1, 12
    assert(hart.regs[2] == 4);
}

void test_slli_srli_srai()
{
    struct Hart hart = {0};
    
    hart.regs[1] = 6;

    execute(&hart, 0x00209113); // slli x2, x1, 2
    assert(hart.regs[2] == 24);

    execute(&hart, 0x0020d113); // srli x2, x1, 2
    assert(hart.regs[2] == 1);

    execute(&hart, 0x4020d113); // srai x2, x1, 2
    assert(hart.regs[2] == 1);

    hart.regs[1] = (uint32_t)-6;

    execute(&hart, 0x0020d113); // srli x2, x1, 2
    assert(hart.regs[2] == 0x3FFFFFFE);

    execute(&hart, 0x4020d113); // srai x2, x1, 2
    assert(hart.regs[2] == 0xFFFFFFFE);
}

void test_lui_auipc()
{
    struct Hart hart = {0};
    
    hart.pc = 0;
    execute(&hart, 0x0007b0b7); // lui x1, 503808
    assert(hart.regs[1] == 503808);
    
    hart.pc = 0;
    execute(&hart, 0x0007b097); // auipc x1, 503808
    assert(hart.regs[1] == 503808);
    
    hart.pc = 12;
    execute(&hart, 0x0007b097); // auipc x1, 503808
    assert(hart.regs[1] == 503820);
}

void test_op()
{
    struct Hart hart = {0};

    hart.regs[1] = 3;
    hart.regs[2] = 4;
    hart.regs[4] = (uint32_t)-1;

    execute(&hart, 0x002081b3); // add, x3, x1, x2
    assert(hart.regs[3] == 7);

    execute(&hart, 0x402081b3); // sub x3, x1, x2
    assert(hart.regs[3] == 0xFFFFFFFF);

    execute(&hart, 0x0020a1b3); // slt x3, x1, x2
    assert(hart.regs[3] == 1);

    execute(&hart, 0x001121b3); // slt x3, x2, 1
    assert(hart.regs[3] == 0);

    execute(&hart, 0x001131b3); // sltu x3, x2, x1
    assert(hart.regs[3] == 0);

    execute(&hart, 0x0020b1b3); // sltu x3, x1, x2
    assert(hart.regs[3] == 1);

    execute(&hart, 0x0040a1b3); // slt x3, x1, x4
    assert(hart.regs[3] == 0);
    
    hart.regs[1] = 6;
    hart.regs[2] = 12;

    execute(&hart, 0x0020e1b3); // or x3, x1, x2
    assert(hart.regs[3] == 14);

    execute(&hart, 0x0020c1b3); // xor x3, x1, x2
    assert(hart.regs[3] == 10);

    execute(&hart, 0x0020f1b3); // and x3, x1, x2
    assert(hart.regs[3] == 4);
    
    hart.regs[1] = 6;
    hart.regs[2] = 2;

    execute(&hart, 0x002091b3); // sll x3, x1, x2
    assert(hart.regs[3] == 24);

    execute(&hart, 0x0020d1b3); // srl x3, x1, x2
    assert(hart.regs[3] == 1);

    execute(&hart, 0x4020d1b3); // sra x3, x1, x2
    assert(hart.regs[3] == 1);
    
    hart.regs[1] = (uint32_t)-6;
    hart.regs[2] = 2;

    execute(&hart, 0x4020d1b3); // sra x3, x1, x2
    assert(hart.regs[3] == 0xFFFFFFFE);
}

void test_jal()
{
    struct Hart hart = {0};

    hart.pc = 12;

    execute(&hart, 0x12c000ef); // jal x1, 300
    assert(hart.regs[1] == 16);
    assert(hart.pc == 312);

    execute(&hart, 0xed5ff0ef); // jal x1, -300
    assert(hart.regs[1] == 316);
    assert(hart.pc == 12);
}

void test_jalr()
{
    struct Hart hart = {0};

    hart.pc = 12;
    hart.regs[1] = 300;

    execute(&hart, 0x00a08167); // jalr x2, 10(x1)
    assert(hart.regs[2] == 16);
    assert(hart.pc == 310);

    execute(&hart, 0xff608167); // jalr x2, -10(x1)
    assert(hart.regs[2] == 314);
    assert(hart.pc == 290);
}

void test_branch()
{
    struct Hart hart = {0};

    hart.pc = 100;
    hart.regs[1] = 2;
    hart.regs[2] = 0xFFFFFFFC;

    execute(&hart, 0x00208c63); // beq x1, x2, 24
    assert(hart.pc == 104);

    hart.pc = 100;
    execute(&hart, 0x00209c63); // bne x1, x2, 24
    assert(hart.pc == 124);

    hart.pc = 100;
    execute(&hart, 0x0020cc63); // blt x1, x2, 24
    assert(hart.pc == 124);

    hart.pc = 100;
    execute(&hart, 0x0020dc63); // bge x1, x2, 24
    assert(hart.pc == 104);

    hart.pc = 100;
    execute(&hart, 0x0020ec63); // bltu x1, x2, 24
    assert(hart.pc == 104);

    hart.pc = 100;
    execute(&hart, 0x0020fc63); // bgeu x1, x2, 24
    assert(hart.pc == 124);
}

void test()
{
    test_addi();
    test_slti_sltiu();
    test_andi_ori_xori();
    test_slli_srli_srai();
    test_lui_auipc();
    test_op();
    test_jal();
    test_jalr();
    test_branch();
}

int main(int argc, char* argv[])
{
    test();

    if (argc < 2)
    {
        printf("Usage: %s <input elf>\n", argv[0]);
        return EXIT_FAILURE;
    }

    uint32_t mem_size = 16 * 1024 * 1024;
    char* mem = (char*)malloc(mem_size);
    uint32_t start_address = 0;

    if (!load_elf(argv[1], mem, mem_size, &start_address))
    {
        printf("Error loading ELF into memory\n");
        return EXIT_FAILURE;
    }

    struct Hart hart = {0};
    hart.pc = start_address;
    hart.mem = mem;
    hart.mem_size = mem_size;

    while (true)
    {
        uint32_t instruction = load_word(&hart, hart.pc);
        execute(&hart, instruction);
    }
    
    return EXIT_SUCCESS;
}