Reorganize all this shit

This commit is contained in:
2024-05-12 11:24:16 +02:00
parent b9dd016064
commit 40b4d52e90
8 changed files with 864 additions and 812 deletions

View File

@ -1,6 +1,5 @@
clang emulator/main.c -o emulator.exe -std=c11 -D_CRT_SECURE_NO_WARNINGS
REM clang linker/main.c -o linker.exe -std=c11 -D_CRT_SECURE_NO_WARNINGS
clang emulator/main.c -o emulator.exe -std=c11 -D_CRT_SECURE_NO_WARNINGS -I.
clang emulator/hart_test.c -o hart_test.exe -std=c11 -D_CRT_SECURE_NO_WARNINGS -I.
clang --target=riscv32 -march=rv32i -e _main -nostdlib main.asm -o main.bin

2
compile_flags.txt Normal file
View File

@ -0,0 +1,2 @@
-I.
-D_CRT_SECURE_NO_WARNINGS

133
emulator/elf.c Normal file
View File

@ -0,0 +1,133 @@
#include <stdint.h>
#include <stdbool.h>
#include <stdio.h>
#include <string.h>
#include <stdbool.h>
#include <assert.h>
#define ET_NONE 0x00
#define ET_REL 0x01
#define ET_EXEC 0x02
#define ET_DYN 0x03
#define ET_CORE 0x04
struct Elf32Header
{
uint8_t ident[16];
uint16_t type;
uint16_t machine;
uint32_t version;
uint32_t entry;
uint32_t phoff;
uint32_t shoff;
uint32_t flags;
uint16_t ehsize;
uint16_t phentsize;
uint16_t phnum;
uint16_t shentsize;
uint16_t shnum;
uint16_t shstrndx;
};
#define PT_NULL 0x00000000
#define PT_LOAD 0x00000001
#define PT_DYNAMIC 0x00000002
#define PT_INTERP 0x00000003
#define PT_NOTE 0x00000004
#define PT_SHLIB 0x00000005
#define PT_PHDR 0x00000006
#define PT_TLS 0x00000007
#define PF_X 0x1
#define PF_W 0x2
#define PF_R 0x4
struct Elf32ProgramHeader
{
uint32_t type;
uint32_t offset;
uint32_t vaddr;
uint32_t paddr;
uint32_t filesz;
uint32_t memsz;
uint32_t flags;
uint32_t align;
};
bool load_elf(const char* file, char* mem, uint32_t mem_size, uint32_t* start_address)
{
FILE* fp = fopen(file, "rb");
if (fp == NULL)
{
printf("Couldn't open input file\n");
return false;
}
struct Elf32Header header;
size_t read = fread(&header, sizeof(struct Elf32Header), 1, fp);
if (read != 1)
{
printf("ELF header too small\n");
return false;
}
static uint8_t kValidIdent[7] = {
0x7f, 0x45, 0x4c, 0x46,
1, 1, 1
};
if (memcmp(kValidIdent, header.ident, 7) != 0)
{
printf("Invalid ELF header\n");
return false;
}
if (header.type != ET_EXEC)
{
printf("Can only link EXEC ELF files\n");
return false;
}
memset(mem, 0, mem_size);
assert(header.phnum == 0 || header.phentsize == sizeof(struct Elf32ProgramHeader));
for (uint32_t i = 0; i < header.phnum; ++i)
{
struct Elf32ProgramHeader pheader;
fseek(fp, header.phoff + i * header.phentsize, SEEK_SET);
read = fread(&pheader, sizeof(struct Elf32ProgramHeader), 1, fp);
if (read != 1)
{
printf("Error reading program header at index %u\n", i);
return false;
}
if (pheader.type == PT_LOAD)
{
if (pheader.paddr + pheader.memsz > mem_size)
{
printf("Memory not large enough for ELF file\n");
return false;
}
fseek(fp, pheader.offset, SEEK_SET);
read = fread(mem + pheader.paddr, pheader.filesz, 1, fp);
if (read != 1)
{
printf("Error when copying ELF segment\n");
return false;
}
}
}
if (header.entry > mem_size)
{
printf("Entry address out of bounds\n");
return false;
}
*start_address = header.entry;
fclose(fp);
return true;
}

6
emulator/elf.h Normal file
View File

@ -0,0 +1,6 @@
#pragma once
#include <stdint.h>
#include <stdbool.h>
bool load_elf(const char* file, char* mem, uint32_t mem_size, uint32_t* start_address);

446
emulator/hart.c Normal file
View File

@ -0,0 +1,446 @@
#include "emulator/hart.h"
#include <stdio.h>
#include <inttypes.h>
#include <assert.h>
#include <stdbool.h>
#include <string.h>
static inline uint32_t sign_extend(uint32_t word, uint32_t size)
{
const uint32_t mask = 1U << (size - 1);
return (word ^ mask) - mask;
}
struct Instruction
{
uint8_t opcode;
uint8_t rs1;
uint8_t rs2;
uint8_t rd;
uint8_t funct3;
uint8_t funct7;
uint32_t imm;
};
typedef struct Instruction Instruction;
static Instruction decode_r_type(uint32_t word)
{
Instruction instruction = {0};
instruction.opcode = word & 0x7F;
instruction.rd = (word >> 7) & 0x1F;
instruction.funct3 = (word >> 12) & 0x07;
instruction.rs1 = (word >> 15) & 0x1F;
instruction.rs2 = (word >> 20) & 0x1F;
instruction.funct7 = word >> 25;
return instruction;
};
static Instruction decode_i_type(uint32_t word)
{
Instruction instruction = {0};
instruction.opcode = word & 0x7F;
instruction.rd = (word >> 7) & 0x1F;
instruction.funct3 = (word >> 12) & 0x07;
instruction.rs1 = (word >> 15) & 0x1F;
instruction.imm = sign_extend(word >> 20, 12);
return instruction;
};
static Instruction decode_s_type(uint32_t word)
{
Instruction instruction = {0};
instruction.opcode = word & 0x7F;
instruction.funct3 = (word >> 12) & 0x07;
instruction.rs1 = (word >> 15) & 0x1F;
instruction.rs2 = (word >> 20) & 0x1F;
instruction.imm = sign_extend(((word >> 7) & 0x1F) | (word >> 25), 12);
return instruction;
};
static Instruction decode_b_type(uint32_t word)
{
Instruction instruction = decode_s_type(word);
instruction.imm = ((instruction.imm << 11) & 0x800) | (instruction.imm & 0xfffff7ff);
return instruction;
};
static Instruction decode_u_type(uint32_t word)
{
Instruction instruction = {0};
instruction.opcode = word & 0x7F;
instruction.rd = (word >> 7) & 0x1F;
instruction.imm = word & 0xFFFFF000;
return instruction;
};
static Instruction decode_j_type(uint32_t word)
{
Instruction instruction = {0};
instruction.opcode = word & 0x7F;
instruction.rd = (word >> 7) & 0x1F;
instruction.imm = sign_extend(
((word & 0x80000000) >> 11) |
((word & 0x000FF000) >> 0) |
((word & 0x00100000) >> 9) |
((word & 0x7FE00000) >> 20), 21);
return instruction;
}
static void execute_op_imm(Hart* hart, uint32_t instruction)
{
const Instruction inst = decode_i_type(instruction);
if (inst.rd == 0) return;
switch (inst.funct3)
{
case 0: // ADDI
hart->regs[inst.rd] = hart->regs[inst.rs1] + inst.imm;
break;
case 1: // SLLI
hart->regs[inst.rd] = hart->regs[inst.rs1] << (inst.imm & 0x1F);
break;
case 2: // SLTI
hart->regs[inst.rd] = (int32_t)hart->regs[inst.rs1] < (int32_t)inst.imm ? 1 : 0;
break;
case 3: // SLTIU
hart->regs[inst.rd] = hart->regs[inst.rs1] < inst.imm ? 1 : 0;
break;
case 4: // XORI
hart->regs[inst.rd] = hart->regs[inst.rs1] ^ inst.imm;
break;
case 5: // SRLI, SRAI
{
const uint32_t shamt = inst.imm & 0x1F;
uint32_t res = hart->regs[inst.rs1] >> shamt;
if ((inst.imm & 0x400) && shamt > 0) { res = sign_extend(res, 32 - shamt); }
hart->regs[inst.rd] = res;
break;
}
case 6: // ORI
hart->regs[inst.rd] = hart->regs[inst.rs1] | inst.imm;
break;
case 7: // ANDI
hart->regs[inst.rd] = hart->regs[inst.rs1] & inst.imm;
break;
default:
assert(!"Unhandled OP-IMM");
}
}
static void execute_op(Hart* hart, uint32_t instruction)
{
const Instruction inst = decode_r_type(instruction);
if (inst.rd == 0) return;
switch (inst.funct3)
{
case 0: // ADD, SUB
if (instruction & 0x40000000)
{
hart->regs[inst.rd] = hart->regs[inst.rs1] - hart->regs[inst.rs2];
}
else
{
hart->regs[inst.rd] = hart->regs[inst.rs1] + hart->regs[inst.rs2];
}
break;
case 1: // SLL
hart->regs[inst.rd] = hart->regs[inst.rs1] << (hart->regs[inst.rs2] & 0x1F);
break;
case 2: // SLT
hart->regs[inst.rd] = (int32_t)hart->regs[inst.rs1] < (int32_t)hart->regs[inst.rs2] ? 1 : 0;
break;
case 3: // SLTU
hart->regs[inst.rd] = hart->regs[inst.rs1] < hart->regs[inst.rs2] ? 1 : 0;
break;
case 4: // XOR
hart->regs[inst.rd] = hart->regs[inst.rs1] ^ hart->regs[inst.rs2];
break;
case 5: // SRL, SRA
{
const uint32_t shamt = hart->regs[inst.rs2] & 0x1F;
uint32_t res = hart->regs[inst.rs1] >> shamt;
if ((instruction & 0x40000000) && shamt > 0) { res = sign_extend(res, 32 - shamt); }
hart->regs[inst.rd] = res;
break;
}
case 6: // OR
hart->regs[inst.rd] = hart->regs[inst.rs1] | hart->regs[inst.rs2];
break;
case 7: // AND
hart->regs[inst.rd] = hart->regs[inst.rs1] & hart->regs[inst.rs2];
break;
default:
assert(!"Unhandled OP-IMM");
}
}
static void execute_branch(Hart* hart, uint32_t instruction)
{
const Instruction inst = decode_b_type(instruction);
const uint32_t r1 = hart->regs[inst.rs1];
const uint32_t r2 = hart->regs[inst.rs2];
bool take_branch = false;
switch (inst.funct3)
{
case 0: take_branch = (r1 == r2); break;
case 1: take_branch = (r1 != r2); break;
case 4: take_branch = (r1 < r2); break;
case 5: take_branch = (r1 >= r2); break;
case 6: take_branch = ((int32_t)r1 < (int32_t)r2); break;
case 7: take_branch = ((int32_t)r1 >= (int32_t)r2); break;
}
if (take_branch)
{
hart->pc += inst.imm;
}
else
{
hart->pc += 4;
}
}
static inline uint32_t load_size(Hart* hart, uint32_t address, uint32_t size)
{
if ((address & 0x80000000) == 0)
{
assert(address + size < hart->mem_size);
uint32_t value = 0;
memcpy(&value, hart->mem + address, size);
return value;
}
return 0;
}
static uint32_t load_byte(Hart* hart, uint32_t address)
{
return load_size(hart, address, 1);
}
static uint32_t load_half(Hart* hart, uint32_t address)
{
return load_size(hart, address, 2);
}
static uint32_t load_word(Hart* hart, uint32_t address)
{
return load_size(hart, address, 4);
}
static inline void store_size(Hart* hart, uint32_t address, uint32_t value, uint32_t size)
{
if ((address & 0x80000000) == 0)
{
assert(address + size < hart->mem_size);
memcpy(hart->mem + address, &value, size);
}
else if (address == 0x80000000)
{
fwrite(&value, 1, size, stdout);
}
}
static void store_byte(Hart* hart, uint32_t address, uint8_t value)
{
store_size(hart, address, value, 1);
}
static void store_half(Hart* hart, uint32_t address, uint16_t value)
{
store_size(hart, address, value, 2);
}
static void store_word(Hart* hart, uint32_t address, uint32_t value)
{
store_size(hart, address, value, 4);
}
static void execute_op_load(Hart* hart, uint32_t instruction)
{
const Instruction inst = decode_i_type(instruction);
const uint32_t address = hart->regs[inst.rs1] + inst.imm;
uint32_t value = 0;
switch (inst.funct3 & 0x03)
{
case 0:
value = load_byte(hart, address);
if ((inst.funct3 & 0x40) == 0)
{
value = sign_extend(value, 8);
}
break;
case 1:
value = load_half(hart, address);
if ((inst.funct3 & 0x40) == 0)
{
value = sign_extend(value, 16);
}
break;
case 2:
value = load_byte(hart, address);
break;
default:
assert(!"Unhandled load size");
break;
}
if (inst.rd != 0)
{
hart->regs[inst.rd] = value;
}
}
static void execute_op_store(Hart* hart, uint32_t instruction)
{
const Instruction inst = decode_s_type(instruction);
const uint32_t address = hart->regs[inst.rs1] + inst.imm;
const uint32_t value = hart->regs[inst.rs2];
switch (inst.funct3 & 0x03)
{
case 0: store_byte(hart, address, value & 0xFF); break;
case 1: store_half(hart, address, value & 0xFFFF); break;
case 2: store_word(hart, address, value); break;
default:
assert(!"Unhandled store size");
break;
}
}
static void execute_misc_mem(Hart* hart, uint32_t instruction)
{
const Instruction inst = decode_i_type(instruction);
if (inst.funct3 == 0)
{
// FENCE
}
else
{
assert(!"Unhandled MISC-MEM instruction");
}
}
static void execute_system(Hart* hart, uint32_t instruction)
{
const Instruction inst = decode_i_type(instruction);
if (inst.funct3 == 0 && inst.rs1 == 0 && inst.rd == 0)
{
if (inst.imm == 0)
{
// ECALL
}
else if (inst.imm == 1)
{
// EBREAK
}
else
{
assert(!"Unhandled SYSTEM/PRIV instruction");
}
}
else
{
assert(!"Unhandled SYSTEM instruction");
}
}
void execute(Hart* hart, uint32_t instruction)
{
switch (instruction & 0x7f)
{
case 0x03:
execute_op_load(hart, instruction);
hart->pc += 4;
break;
case 0x0F:
execute_misc_mem(hart, instruction);
hart->pc += 4;
break;
case 0x13:
execute_op_imm(hart, instruction);
hart->pc += 4;
break;
case 0x17: // AUIPC
{
Instruction inst = decode_u_type(instruction);
if (inst.rd != 0)
{
hart->regs[inst.rd] = inst.imm + hart->pc;
}
hart->pc += 4;
break;
}
case 0x23:
execute_op_store(hart, instruction);
hart->pc += 4;
break;
case 0x33:
execute_op(hart, instruction);
hart->pc += 4;
break;
case 0x37: // LUI
{
Instruction inst = decode_u_type(instruction);
if (inst.rd != 0)
{
hart->regs[inst.rd] = inst.imm;
}
hart->pc += 4;
break;
}
case 0x63:
execute_branch(hart, instruction);
break;
case 0x67: // JALR
{
Instruction inst = decode_i_type(instruction);
assert(inst.funct3 == 0);
if (inst.rd != 0)
{
hart->regs[inst.rd] = hart->pc + 4;
}
hart->pc = (hart->regs[inst.rs1] + inst.imm) & 0xFFFFFFFE;
break;
}
case 0x6F: // JAL
{
Instruction inst = decode_j_type(instruction);
if (inst.rd != 0)
{
hart->regs[inst.rd] = hart->pc + 4;
}
hart->pc += inst.imm;
break;
}
case 0x73:
{
execute_system(hart, instruction);
hart->pc += 4;
break;
}
default:
assert(!"Unhandled opcode");
}
assert(hart->regs[0] == 0);
}
void execute_from(Hart* hart, uint32_t start_address)
{
hart->pc = start_address;
while (true)
{
uint32_t instruction = load_word(hart, hart->pc);
execute(hart, instruction);
}
}

16
emulator/hart.h Normal file
View File

@ -0,0 +1,16 @@
#pragma once
#include <stdint.h>
struct Hart
{
uint32_t pc;
uint32_t regs[32];
char* mem;
uint32_t mem_size;
};
typedef struct Hart Hart;
void execute(Hart* hart, uint32_t instruction);
void execute_from(Hart* hart, uint32_t start_address);

251
emulator/hart_test.c Normal file
View File

@ -0,0 +1,251 @@
#include <stdlib.h>
#include <inttypes.h>
#include <assert.h>
#include <stdbool.h>
#include "emulator/hart.h"
static void test_addi()
{
struct Hart hart = {0};
execute(&hart, 0x00500093); // addi x1, x0, 5
assert(hart.regs[1] == 5);
execute(&hart, 0xffe00093); // addi, x1, x0, -2
assert(hart.regs[1] == 0xfffffffe);
}
static void test_slti_sltiu()
{
struct Hart hart = {0};
hart.regs[1] = 5;
execute(&hart, 0x00f0b113); // sltiu x2, x1, 15
assert(hart.regs[2] == 1);
execute(&hart, 0x0050b113); // sltiu x2, x1, 15
assert(hart.regs[2] == 0);
execute(&hart, 0x0010b113); // sltiu x2, x1, 15
assert(hart.regs[2] == 0);
execute(&hart, 0x00f0a113); // slti x2, x1, 15
assert(hart.regs[2] == 1);
execute(&hart, 0x0050a113); // slti x2, x1, 15
assert(hart.regs[2] == 0);
execute(&hart, 0x0010a113); // slti x2, x1, 15
assert(hart.regs[2] == 0);
execute(&hart, 0xffb0a113); // slti x2, x1, -5
assert(hart.regs[2] == 0);
hart.regs[1] = (uint32_t)-20;
execute(&hart, 0xffb0a113); // slti x2, x1, -5
assert(hart.regs[2] == 1);
}
static void test_andi_ori_xori()
{
struct Hart hart = {0};
hart.regs[1] = 6;
execute(&hart, 0x00c0c113); // xori x2, x1, 12
assert(hart.regs[2] == 10);
execute(&hart, 0x00c0e113); // ori x2, x1, 12
assert(hart.regs[2] == 14);
execute(&hart, 0x00c0f113); // andi x2, x1, 12
assert(hart.regs[2] == 4);
}
static void test_slli_srli_srai()
{
struct Hart hart = {0};
hart.regs[1] = 6;
execute(&hart, 0x00209113); // slli x2, x1, 2
assert(hart.regs[2] == 24);
execute(&hart, 0x0020d113); // srli x2, x1, 2
assert(hart.regs[2] == 1);
execute(&hart, 0x4020d113); // srai x2, x1, 2
assert(hart.regs[2] == 1);
hart.regs[1] = (uint32_t)-6;
execute(&hart, 0x0020d113); // srli x2, x1, 2
assert(hart.regs[2] == 0x3FFFFFFE);
execute(&hart, 0x4020d113); // srai x2, x1, 2
assert(hart.regs[2] == 0xFFFFFFFE);
}
static void test_lui_auipc()
{
struct Hart hart = {0};
hart.pc = 0;
execute(&hart, 0x0007b0b7); // lui x1, 503808
assert(hart.regs[1] == 503808);
hart.pc = 0;
execute(&hart, 0x0007b097); // auipc x1, 503808
assert(hart.regs[1] == 503808);
hart.pc = 12;
execute(&hart, 0x0007b097); // auipc x1, 503808
assert(hart.regs[1] == 503820);
}
static void test_op()
{
struct Hart hart = {0};
hart.regs[1] = 3;
hart.regs[2] = 4;
hart.regs[4] = (uint32_t)-1;
execute(&hart, 0x002081b3); // add, x3, x1, x2
assert(hart.regs[3] == 7);
execute(&hart, 0x402081b3); // sub x3, x1, x2
assert(hart.regs[3] == 0xFFFFFFFF);
execute(&hart, 0x0020a1b3); // slt x3, x1, x2
assert(hart.regs[3] == 1);
execute(&hart, 0x001121b3); // slt x3, x2, 1
assert(hart.regs[3] == 0);
execute(&hart, 0x001131b3); // sltu x3, x2, x1
assert(hart.regs[3] == 0);
execute(&hart, 0x0020b1b3); // sltu x3, x1, x2
assert(hart.regs[3] == 1);
execute(&hart, 0x0040a1b3); // slt x3, x1, x4
assert(hart.regs[3] == 0);
hart.regs[1] = 6;
hart.regs[2] = 12;
execute(&hart, 0x0020e1b3); // or x3, x1, x2
assert(hart.regs[3] == 14);
execute(&hart, 0x0020c1b3); // xor x3, x1, x2
assert(hart.regs[3] == 10);
execute(&hart, 0x0020f1b3); // and x3, x1, x2
assert(hart.regs[3] == 4);
hart.regs[1] = 6;
hart.regs[2] = 2;
execute(&hart, 0x002091b3); // sll x3, x1, x2
assert(hart.regs[3] == 24);
execute(&hart, 0x0020d1b3); // srl x3, x1, x2
assert(hart.regs[3] == 1);
execute(&hart, 0x4020d1b3); // sra x3, x1, x2
assert(hart.regs[3] == 1);
hart.regs[1] = (uint32_t)-6;
hart.regs[2] = 2;
execute(&hart, 0x4020d1b3); // sra x3, x1, x2
assert(hart.regs[3] == 0xFFFFFFFE);
}
static void test_jal()
{
struct Hart hart = {0};
hart.pc = 12;
execute(&hart, 0x12c000ef); // jal x1, 300
assert(hart.regs[1] == 16);
assert(hart.pc == 312);
execute(&hart, 0xed5ff0ef); // jal x1, -300
assert(hart.regs[1] == 316);
assert(hart.pc == 12);
}
static void test_jalr()
{
struct Hart hart = {0};
hart.pc = 12;
hart.regs[1] = 300;
execute(&hart, 0x00a08167); // jalr x2, 10(x1)
assert(hart.regs[2] == 16);
assert(hart.pc == 310);
execute(&hart, 0xff608167); // jalr x2, -10(x1)
assert(hart.regs[2] == 314);
assert(hart.pc == 290);
}
static void test_branch()
{
struct Hart hart = {0};
hart.pc = 100;
hart.regs[1] = 2;
hart.regs[2] = 0xFFFFFFFC;
execute(&hart, 0x00208c63); // beq x1, x2, 24
assert(hart.pc == 104);
hart.pc = 100;
execute(&hart, 0x00209c63); // bne x1, x2, 24
assert(hart.pc == 124);
hart.pc = 100;
execute(&hart, 0x0020cc63); // blt x1, x2, 24
assert(hart.pc == 124);
hart.pc = 100;
execute(&hart, 0x0020dc63); // bge x1, x2, 24
assert(hart.pc == 104);
hart.pc = 100;
execute(&hart, 0x0020ec63); // bltu x1, x2, 24
assert(hart.pc == 104);
hart.pc = 100;
execute(&hart, 0x0020fc63); // bgeu x1, x2, 24
assert(hart.pc == 124);
}
void test()
{
test_addi();
test_slti_sltiu();
test_andi_ori_xori();
test_slli_srli_srai();
test_lui_auipc();
test_op();
test_jal();
test_jalr();
test_branch();
}
int main(int argc, char* argv[])
{
test();
return EXIT_SUCCESS;
}
#include "emulator/hart.c"

View File

@ -1,812 +1,12 @@
#include <stdio.h>
#include <stdlib.h>
#include <inttypes.h>
#include <assert.h>
#include <stdbool.h>
#include <string.h>
#define ET_NONE 0x00
#define ET_REL 0x01
#define ET_EXEC 0x02
#define ET_DYN 0x03
#define ET_CORE 0x04
struct Elf32Header
{
uint8_t ident[16];
uint16_t type;
uint16_t machine;
uint32_t version;
uint32_t entry;
uint32_t phoff;
uint32_t shoff;
uint32_t flags;
uint16_t ehsize;
uint16_t phentsize;
uint16_t phnum;
uint16_t shentsize;
uint16_t shnum;
uint16_t shstrndx;
};
#define PT_NULL 0x00000000
#define PT_LOAD 0x00000001
#define PT_DYNAMIC 0x00000002
#define PT_INTERP 0x00000003
#define PT_NOTE 0x00000004
#define PT_SHLIB 0x00000005
#define PT_PHDR 0x00000006
#define PT_TLS 0x00000007
#define PF_X 0x1
#define PF_W 0x2
#define PF_R 0x4
struct Elf32ProgramHeader
{
uint32_t type;
uint32_t offset;
uint32_t vaddr;
uint32_t paddr;
uint32_t filesz;
uint32_t memsz;
uint32_t flags;
uint32_t align;
};
bool load_elf(const char* file, char* mem, uint32_t mem_size, uint32_t* start_address)
{
FILE* fp = fopen(file, "rb");
if (fp == NULL)
{
printf("Couldn't open input file\n");
return false;
}
struct Elf32Header header;
size_t read = fread(&header, sizeof(struct Elf32Header), 1, fp);
if (read != 1)
{
printf("ELF header too small\n");
return false;
}
static uint8_t kValidIdent[7] = {
0x7f, 0x45, 0x4c, 0x46,
1, 1, 1
};
if (memcmp(kValidIdent, header.ident, 7) != 0)
{
printf("Invalid ELF header\n");
return false;
}
if (header.type != ET_EXEC)
{
printf("Can only link EXEC ELF files\n");
return false;
}
memset(mem, 0, mem_size);
assert(header.phnum == 0 || header.phentsize == sizeof(struct Elf32ProgramHeader));
for (uint32_t i = 0; i < header.phnum; ++i)
{
struct Elf32ProgramHeader pheader;
fseek(fp, header.phoff + i * header.phentsize, SEEK_SET);
read = fread(&pheader, sizeof(struct Elf32ProgramHeader), 1, fp);
if (read != 1)
{
printf("Error reading program header at index %u\n", i);
return false;
}
if (pheader.type == PT_LOAD)
{
if (pheader.paddr + pheader.memsz > mem_size)
{
printf("Memory not large enough for ELF file\n");
return false;
}
fseek(fp, pheader.offset, SEEK_SET);
read = fread(mem + pheader.paddr, pheader.filesz, 1, fp);
if (read != 1)
{
printf("Error when copying ELF segment\n");
return false;
}
}
}
if (header.entry > mem_size)
{
printf("Entry address out of bounds\n");
return false;
}
*start_address = header.entry;
fclose(fp);
return true;
}
inline uint32_t sign_extend(uint32_t word, uint32_t size)
{
const uint32_t mask = 1U << (size - 1);
return (word ^ mask) - mask;
}
struct Instruction
{
uint8_t opcode;
uint8_t rs1;
uint8_t rs2;
uint8_t rd;
uint8_t funct3;
uint8_t funct7;
uint32_t imm;
};
struct Instruction decode_r_type(uint32_t word)
{
struct Instruction instruction = {0};
instruction.opcode = word & 0x7F;
instruction.rd = (word >> 7) & 0x1F;
instruction.funct3 = (word >> 12) & 0x07;
instruction.rs1 = (word >> 15) & 0x1F;
instruction.rs2 = (word >> 20) & 0x1F;
instruction.funct7 = word >> 25;
return instruction;
};
struct Instruction decode_i_type(uint32_t word)
{
struct Instruction instruction = {0};
instruction.opcode = word & 0x7F;
instruction.rd = (word >> 7) & 0x1F;
instruction.funct3 = (word >> 12) & 0x07;
instruction.rs1 = (word >> 15) & 0x1F;
instruction.imm = sign_extend(word >> 20, 12);
return instruction;
};
struct Instruction decode_s_type(uint32_t word)
{
struct Instruction instruction = {0};
instruction.opcode = word & 0x7F;
instruction.funct3 = (word >> 12) & 0x07;
instruction.rs1 = (word >> 15) & 0x1F;
instruction.rs2 = (word >> 20) & 0x1F;
instruction.imm = sign_extend(((word >> 7) & 0x1F) | (word >> 25), 12);
return instruction;
};
struct Instruction decode_b_type(uint32_t word)
{
struct Instruction instruction = decode_s_type(word);
instruction.imm = ((instruction.imm << 11) & 0x800) | (instruction.imm & 0xfffff7ff);
return instruction;
};
struct Instruction decode_u_type(uint32_t word)
{
struct Instruction instruction = {0};
instruction.opcode = word & 0x7F;
instruction.rd = (word >> 7) & 0x1F;
instruction.imm = word & 0xFFFFF000;
return instruction;
};
struct Instruction decode_j_type(uint32_t word)
{
struct Instruction instruction = {0};
instruction.opcode = word & 0x7F;
instruction.rd = (word >> 7) & 0x1F;
instruction.imm = sign_extend(
((word & 0x80000000) >> 11) |
((word & 0x000FF000) >> 0) |
((word & 0x00100000) >> 9) |
((word & 0x7FE00000) >> 20), 21);
return instruction;
}
struct Hart
{
uint32_t pc;
uint32_t regs[32];
char* mem;
uint32_t mem_size;
};
void execute_op_imm(struct Hart* hart, uint32_t instruction)
{
const struct Instruction inst = decode_i_type(instruction);
if (inst.rd == 0) return;
switch (inst.funct3)
{
case 0: // ADDI
hart->regs[inst.rd] = hart->regs[inst.rs1] + inst.imm;
break;
case 1: // SLLI
hart->regs[inst.rd] = hart->regs[inst.rs1] << (inst.imm & 0x1F);
break;
case 2: // SLTI
hart->regs[inst.rd] = (int32_t)hart->regs[inst.rs1] < (int32_t)inst.imm ? 1 : 0;
break;
case 3: // SLTIU
hart->regs[inst.rd] = hart->regs[inst.rs1] < inst.imm ? 1 : 0;
break;
case 4: // XORI
hart->regs[inst.rd] = hart->regs[inst.rs1] ^ inst.imm;
break;
case 5: // SRLI, SRAI
{
const uint32_t shamt = inst.imm & 0x1F;
uint32_t res = hart->regs[inst.rs1] >> shamt;
if ((inst.imm & 0x400) && shamt > 0) { res = sign_extend(res, 32 - shamt); }
hart->regs[inst.rd] = res;
break;
}
case 6: // ORI
hart->regs[inst.rd] = hart->regs[inst.rs1] | inst.imm;
break;
case 7: // ANDI
hart->regs[inst.rd] = hart->regs[inst.rs1] & inst.imm;
break;
default:
assert(!"Unhandled OP-IMM");
}
}
void execute_op(struct Hart* hart, uint32_t instruction)
{
const struct Instruction inst = decode_r_type(instruction);
if (inst.rd == 0) return;
switch (inst.funct3)
{
case 0: // ADD, SUB
if (instruction & 0x40000000)
{
hart->regs[inst.rd] = hart->regs[inst.rs1] - hart->regs[inst.rs2];
}
else
{
hart->regs[inst.rd] = hart->regs[inst.rs1] + hart->regs[inst.rs2];
}
break;
case 1: // SLL
hart->regs[inst.rd] = hart->regs[inst.rs1] << (hart->regs[inst.rs2] & 0x1F);
break;
case 2: // SLT
hart->regs[inst.rd] = (int32_t)hart->regs[inst.rs1] < (int32_t)hart->regs[inst.rs2] ? 1 : 0;
break;
case 3: // SLTU
hart->regs[inst.rd] = hart->regs[inst.rs1] < hart->regs[inst.rs2] ? 1 : 0;
break;
case 4: // XOR
hart->regs[inst.rd] = hart->regs[inst.rs1] ^ hart->regs[inst.rs2];
break;
case 5: // SRL, SRA
{
const uint32_t shamt = hart->regs[inst.rs2] & 0x1F;
uint32_t res = hart->regs[inst.rs1] >> shamt;
if ((instruction & 0x40000000) && shamt > 0) { res = sign_extend(res, 32 - shamt); }
hart->regs[inst.rd] = res;
break;
}
case 6: // OR
hart->regs[inst.rd] = hart->regs[inst.rs1] | hart->regs[inst.rs2];
break;
case 7: // AND
hart->regs[inst.rd] = hart->regs[inst.rs1] & hart->regs[inst.rs2];
break;
default:
assert(!"Unhandled OP-IMM");
}
}
void execute_branch(struct Hart* hart, uint32_t instruction)
{
const struct Instruction inst = decode_b_type(instruction);
const uint32_t r1 = hart->regs[inst.rs1];
const uint32_t r2 = hart->regs[inst.rs2];
bool take_branch = false;
switch (inst.funct3)
{
case 0: take_branch = (r1 == r2); break;
case 1: take_branch = (r1 != r2); break;
case 4: take_branch = (r1 < r2); break;
case 5: take_branch = (r1 >= r2); break;
case 6: take_branch = ((int32_t)r1 < (int32_t)r2); break;
case 7: take_branch = ((int32_t)r1 >= (int32_t)r2); break;
}
if (take_branch)
{
hart->pc += inst.imm;
}
else
{
hart->pc += 4;
}
}
inline uint32_t load_size(struct Hart* hart, uint32_t address, uint32_t size)
{
if ((address & 0x80000000) == 0)
{
assert(address + size < hart->mem_size);
uint32_t value = 0;
memcpy(&value, hart->mem + address, size);
return value;
}
return 0;
}
uint32_t load_byte(struct Hart* hart, uint32_t address)
{
return load_size(hart, address, 1);
}
uint32_t load_half(struct Hart* hart, uint32_t address)
{
return load_size(hart, address, 2);
}
uint32_t load_word(struct Hart* hart, uint32_t address)
{
return load_size(hart, address, 4);
}
inline void store_size(struct Hart* hart, uint32_t address, uint32_t value, uint32_t size)
{
if ((address & 0x80000000) == 0)
{
assert(address + size < hart->mem_size);
memcpy(hart->mem + address, &value, size);
}
else if (address == 0x80000000)
{
fwrite(&value, 1, size, stdout);
}
}
void store_byte(struct Hart* hart, uint32_t address, uint8_t value)
{
store_size(hart, address, value, 1);
}
void store_half(struct Hart* hart, uint32_t address, uint16_t value)
{
store_size(hart, address, value, 2);
}
void store_word(struct Hart* hart, uint32_t address, uint32_t value)
{
store_size(hart, address, value, 4);
}
void execute_op_load(struct Hart* hart, uint32_t instruction)
{
const struct Instruction inst = decode_i_type(instruction);
const uint32_t address = hart->regs[inst.rs1] + inst.imm;
uint32_t value = 0;
switch (inst.funct3 & 0x03)
{
case 0:
value = load_byte(hart, address);
if ((inst.funct3 & 0x40) == 0)
{
value = sign_extend(value, 8);
}
break;
case 1:
value = load_half(hart, address);
if ((inst.funct3 & 0x40) == 0)
{
value = sign_extend(value, 16);
}
break;
case 2:
value = load_byte(hart, address);
break;
default:
assert(!"Unhandled load size");
break;
}
if (inst.rd != 0)
{
hart->regs[inst.rd] = value;
}
}
void execute_op_store(struct Hart* hart, uint32_t instruction)
{
const struct Instruction inst = decode_s_type(instruction);
const uint32_t address = hart->regs[inst.rs1] + inst.imm;
const uint32_t value = hart->regs[inst.rs2];
switch (inst.funct3 & 0x03)
{
case 0: store_byte(hart, address, value & 0xFF); break;
case 1: store_half(hart, address, value & 0xFFFF); break;
case 2: store_word(hart, address, value); break;
default:
assert(!"Unhandled store size");
break;
}
}
void execute_misc_mem(struct Hart* hart, uint32_t instruction)
{
const struct Instruction inst = decode_i_type(instruction);
if (inst.funct3 == 0)
{
// FENCE
}
else
{
assert(!"Unhandled MISC-MEM instruction");
}
}
void execute_system(struct Hart* hart, uint32_t instruction)
{
const struct Instruction inst = decode_i_type(instruction);
if (inst.funct3 == 0 && inst.rs1 == 0 && inst.rd == 0)
{
if (inst.imm == 0)
{
// ECALL
}
else if (inst.imm == 1)
{
// EBREAK
}
else
{
assert(!"Unhandled SYSTEM/PRIV instruction");
}
}
else
{
assert(!"Unhandled SYSTEM instruction");
}
}
void execute(struct Hart* hart, uint32_t instruction)
{
switch (instruction & 0x7f)
{
case 0x03:
execute_op_load(hart, instruction);
hart->pc += 4;
break;
case 0x0F:
execute_misc_mem(hart, instruction);
hart->pc += 4;
break;
case 0x13:
execute_op_imm(hart, instruction);
hart->pc += 4;
break;
case 0x17: // AUIPC
{
struct Instruction inst = decode_u_type(instruction);
if (inst.rd != 0)
{
hart->regs[inst.rd] = inst.imm + hart->pc;
}
hart->pc += 4;
break;
}
case 0x23:
execute_op_store(hart, instruction);
hart->pc += 4;
break;
case 0x33:
execute_op(hart, instruction);
hart->pc += 4;
break;
case 0x37: // LUI
{
struct Instruction inst = decode_u_type(instruction);
if (inst.rd != 0)
{
hart->regs[inst.rd] = inst.imm;
}
hart->pc += 4;
break;
}
case 0x63:
execute_branch(hart, instruction);
break;
case 0x67: // JALR
{
struct Instruction inst = decode_i_type(instruction);
assert(inst.funct3 == 0);
if (inst.rd != 0)
{
hart->regs[inst.rd] = hart->pc + 4;
}
hart->pc = (hart->regs[inst.rs1] + inst.imm) & 0xFFFFFFFE;
break;
}
case 0x6F: // JAL
{
struct Instruction inst = decode_j_type(instruction);
if (inst.rd != 0)
{
hart->regs[inst.rd] = hart->pc + 4;
}
hart->pc += inst.imm;
break;
}
case 0x73:
{
execute_system(hart, instruction);
hart->pc += 4;
break;
}
default:
assert(!"Unhandled opcode");
}
assert(hart->regs[0] == 0);
}
void test_addi()
{
struct Hart hart = {0};
execute(&hart, 0x00500093); // addi x1, x0, 5
assert(hart.regs[1] == 5);
execute(&hart, 0xffe00093); // addi, x1, x0, -2
assert(hart.regs[1] == 0xfffffffe);
}
void test_slti_sltiu()
{
struct Hart hart = {0};
hart.regs[1] = 5;
execute(&hart, 0x00f0b113); // sltiu x2, x1, 15
assert(hart.regs[2] == 1);
execute(&hart, 0x0050b113); // sltiu x2, x1, 15
assert(hart.regs[2] == 0);
execute(&hart, 0x0010b113); // sltiu x2, x1, 15
assert(hart.regs[2] == 0);
execute(&hart, 0x00f0a113); // slti x2, x1, 15
assert(hart.regs[2] == 1);
execute(&hart, 0x0050a113); // slti x2, x1, 15
assert(hart.regs[2] == 0);
execute(&hart, 0x0010a113); // slti x2, x1, 15
assert(hart.regs[2] == 0);
execute(&hart, 0xffb0a113); // slti x2, x1, -5
assert(hart.regs[2] == 0);
hart.regs[1] = (uint32_t)-20;
execute(&hart, 0xffb0a113); // slti x2, x1, -5
assert(hart.regs[2] == 1);
}
void test_andi_ori_xori()
{
struct Hart hart = {0};
hart.regs[1] = 6;
execute(&hart, 0x00c0c113); // xori x2, x1, 12
assert(hart.regs[2] == 10);
execute(&hart, 0x00c0e113); // ori x2, x1, 12
assert(hart.regs[2] == 14);
execute(&hart, 0x00c0f113); // andi x2, x1, 12
assert(hart.regs[2] == 4);
}
void test_slli_srli_srai()
{
struct Hart hart = {0};
hart.regs[1] = 6;
execute(&hart, 0x00209113); // slli x2, x1, 2
assert(hart.regs[2] == 24);
execute(&hart, 0x0020d113); // srli x2, x1, 2
assert(hart.regs[2] == 1);
execute(&hart, 0x4020d113); // srai x2, x1, 2
assert(hart.regs[2] == 1);
hart.regs[1] = (uint32_t)-6;
execute(&hart, 0x0020d113); // srli x2, x1, 2
assert(hart.regs[2] == 0x3FFFFFFE);
execute(&hart, 0x4020d113); // srai x2, x1, 2
assert(hart.regs[2] == 0xFFFFFFFE);
}
void test_lui_auipc()
{
struct Hart hart = {0};
hart.pc = 0;
execute(&hart, 0x0007b0b7); // lui x1, 503808
assert(hart.regs[1] == 503808);
hart.pc = 0;
execute(&hart, 0x0007b097); // auipc x1, 503808
assert(hart.regs[1] == 503808);
hart.pc = 12;
execute(&hart, 0x0007b097); // auipc x1, 503808
assert(hart.regs[1] == 503820);
}
void test_op()
{
struct Hart hart = {0};
hart.regs[1] = 3;
hart.regs[2] = 4;
hart.regs[4] = (uint32_t)-1;
execute(&hart, 0x002081b3); // add, x3, x1, x2
assert(hart.regs[3] == 7);
execute(&hart, 0x402081b3); // sub x3, x1, x2
assert(hart.regs[3] == 0xFFFFFFFF);
execute(&hart, 0x0020a1b3); // slt x3, x1, x2
assert(hart.regs[3] == 1);
execute(&hart, 0x001121b3); // slt x3, x2, 1
assert(hart.regs[3] == 0);
execute(&hart, 0x001131b3); // sltu x3, x2, x1
assert(hart.regs[3] == 0);
execute(&hart, 0x0020b1b3); // sltu x3, x1, x2
assert(hart.regs[3] == 1);
execute(&hart, 0x0040a1b3); // slt x3, x1, x4
assert(hart.regs[3] == 0);
hart.regs[1] = 6;
hart.regs[2] = 12;
execute(&hart, 0x0020e1b3); // or x3, x1, x2
assert(hart.regs[3] == 14);
execute(&hart, 0x0020c1b3); // xor x3, x1, x2
assert(hart.regs[3] == 10);
execute(&hart, 0x0020f1b3); // and x3, x1, x2
assert(hart.regs[3] == 4);
hart.regs[1] = 6;
hart.regs[2] = 2;
execute(&hart, 0x002091b3); // sll x3, x1, x2
assert(hart.regs[3] == 24);
execute(&hart, 0x0020d1b3); // srl x3, x1, x2
assert(hart.regs[3] == 1);
execute(&hart, 0x4020d1b3); // sra x3, x1, x2
assert(hart.regs[3] == 1);
hart.regs[1] = (uint32_t)-6;
hart.regs[2] = 2;
execute(&hart, 0x4020d1b3); // sra x3, x1, x2
assert(hart.regs[3] == 0xFFFFFFFE);
}
void test_jal()
{
struct Hart hart = {0};
hart.pc = 12;
execute(&hart, 0x12c000ef); // jal x1, 300
assert(hart.regs[1] == 16);
assert(hart.pc == 312);
execute(&hart, 0xed5ff0ef); // jal x1, -300
assert(hart.regs[1] == 316);
assert(hart.pc == 12);
}
void test_jalr()
{
struct Hart hart = {0};
hart.pc = 12;
hart.regs[1] = 300;
execute(&hart, 0x00a08167); // jalr x2, 10(x1)
assert(hart.regs[2] == 16);
assert(hart.pc == 310);
execute(&hart, 0xff608167); // jalr x2, -10(x1)
assert(hart.regs[2] == 314);
assert(hart.pc == 290);
}
void test_branch()
{
struct Hart hart = {0};
hart.pc = 100;
hart.regs[1] = 2;
hart.regs[2] = 0xFFFFFFFC;
execute(&hart, 0x00208c63); // beq x1, x2, 24
assert(hart.pc == 104);
hart.pc = 100;
execute(&hart, 0x00209c63); // bne x1, x2, 24
assert(hart.pc == 124);
hart.pc = 100;
execute(&hart, 0x0020cc63); // blt x1, x2, 24
assert(hart.pc == 124);
hart.pc = 100;
execute(&hart, 0x0020dc63); // bge x1, x2, 24
assert(hart.pc == 104);
hart.pc = 100;
execute(&hart, 0x0020ec63); // bltu x1, x2, 24
assert(hart.pc == 104);
hart.pc = 100;
execute(&hart, 0x0020fc63); // bgeu x1, x2, 24
assert(hart.pc == 124);
}
void test()
{
test_addi();
test_slti_sltiu();
test_andi_ori_xori();
test_slli_srli_srai();
test_lui_auipc();
test_op();
test_jal();
test_jalr();
test_branch();
}
#include "emulator/hart.h"
#include "emulator/elf.h"
int main(int argc, char* argv[])
{
test();
if (argc < 2)
{
printf("Usage: %s <input elf>\n", argv[0]);
@ -824,15 +24,14 @@ int main(int argc, char* argv[])
}
struct Hart hart = {0};
hart.pc = start_address;
hart.mem = mem;
hart.mem_size = mem_size;
while (true)
{
uint32_t instruction = load_word(&hart, hart.pc);
execute(&hart, instruction);
}
execute_from(&hart, start_address);
return EXIT_SUCCESS;
}
#include "emulator/hart.c"
#include "emulator/elf.c"